Performance Bounds for Human
Machine Teaming and Design
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A Human Machine Team Design

I Designof teams from high level metrics
(Cognitive workload, performance, enerc

Mathematics of low level shared control
Informs all the above




Background to Approach
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£ f]* = argmax p(f", £ | Z1.,)
fR f

u(t+1) =7 (t+1)

P(ERE | Z0s) = 65 (E%, D)p(E® | 22%) T o(E | 7h)
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See:Unfreezinghe Robot: Navigation in Dense, Interact@gpwds IROS 201®obot Navigation in Dense Human Crowd
the Case fo€Cooperation|CRA 2013; andobotNavigation in Dense Human Crowds: Statistical Models and Experimer
Studies of Human Rob@boperationlJRR 2015
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Shared Control, conceptually

A &9y A N VWISE Eoapletahtéhgmy
and environment
A Sharedcontrol couplesoperator and autonomy

A Model the relationship between operator,
autonomy and environment
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operator

autonomy

p(ha vaf | Zl:t) —

p(h ‘ Zill:t)

operator
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Interacting Random Trajectories (IRT)

operator autonomy

h, % f]* =argmaxp(h, £, f | z1.;)
h,fR f

U?RT (t) — ft]iil—l
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Linear Blending

uip(t) = Knzy + Kth}}rl

£ £1* = argmax p(f'%, f | Z1.¢)
fR f

o K: “how much” control operator gets

e K “how much” control machine gets

OKh—I—KR 1

Why focus on linear blendind®e factolow level shared control architecture;
see5 NJ A BblievaBlending formalism for shared conti@dRR2013.
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o Start with p(h, £ f | zy.;) = ¢y (h, £8)p(h | 22,)p(£8, £ | Z1.4)
e Take p(h|z?,)=N(h|h X;)
o Take p(f&,f|z1,) = N(fF | £I* Xp)
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Then



