
Quantifying Resilience in
Component-Based Software

Architecture Models
Daniel Balasubramanian

Abhishek Dubey, Nag Mahadevan,
Tihamer Levendovszky, Will Otte, Gabor

Karsai

Supported by USAF/AFRL under Cooperative
Agreement # FA8750-13-2-0050

Overview

• Focus: how can component-based, software-
intensive systems be made more resilient?
– Through model-based techniques for design-time

architecture specification and analysis
accompanied by corresponding run-time support.

What is Resilience?
• Webster:

– Capable of withstanding shock without permanent deformation or rupture
– Tending to recover from or adjust easily to misfortune or change

• Technical:
– The persistence of the avoidance of failures that are unacceptably frequent or severe,

when facing changes. [Laprie, ‘04]
– A resilient system is trusted and effective out of the box in a wide range of contexts, and

easily adapted to many others through reconfiguration or replacement. [R. Neches, OSD]

• Intuitive:
– The ability to “bounce-back” after something changes

• We focus on model-based development for Resilient Software Systems
– Design-time techniques + run-time support = resilience

Context for Resilience
• Resilient Software Systems are needed in many domains: desktop

applications, web-based systems, collaborative systems, service-oriented
systems, etc.

• Focus area: DREMS
– Distributed: applications are executed on a distributed platform with

dynamically changing topology
– Real-time: applications have to satisfy real-time requirements
– Embedded: applications may interact with the physical world
– Managed: applications are managed external by an authority
– Systems

• Examples:
– On-board software for vehicles with networked processors
– Swarm of UAVs executing wide-area surveillance missions
– Distributed C2 systems with real-time requirements
– Fractionated spacecraft (with wireless links) that provides a ‘platform as a

service’

Modeling Overview

• Development is centered around models

Middleware

App-specific code

App
Comp

App
Comp

App
Comp

Domain-Specific Model

Software
generator

Run-time System

Resilience
calculator

Resilience
metrics

3. Middleware
provides run-time
support.

Re
si

lie
nc

e
M

an
ag

er

1. Resilience algorithm
calculates metrics for
specific architecture.

Operating System

Hardware

App

2. Generate
corresponding
run-time pieces.

Run-time Design-time

Domain-Specific Modeling Language

• A DSML is used to define the resilient software architecture
• Why a DSML?

– Existing modeling languages do not cover the entire development process and
are not integrated with comprehensive generators

– Lack of support for resilience in existing modeling languages (SysML, AADL)
• What does a model enable?

– Specification of software architecture
– Code generation (app code, glue code, deployment scripts)
– System integration (integrating multiple applications, deployments)
– Analysis (resilience, scheduling)

• What does a model contain?
– Software (communicating components)
– Hardware (the physical nodes, resources)
– Deployment of software onto hardware
– Resilience description

2 Resilience Scenarios

Middleware

Image processing app

Comp1 Comp2 Comp3

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Consider a system with three
nodes running an image
processing application.
The application has 3 components.
Comp3 requires a specialized
camera piece of hardware.

Node 1

Camera

Middleware

Application code

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Node 2

Camera

Middleware

Application code

Comp4 Comp5 Comp6

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Node 3

2 Resilience Scenarios

Middleware

Image processing app

Comp1 Comp2

Comp3

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Consider a system with three
nodes running an image
processing application.
The application has 3 components.
Comp3 requires a specialized
camera piece of hardware.

Node 1

Camera

Middleware

Application code

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Node 2

Camera

Middleware

Application code

Comp4 Comp5 Comp6

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Node 3

Scenario 1: the camera on node 1 fails.
 -> Redeploy Comp3 on Node 2

X

2 Resilience Scenarios

Middleware

Image processing app

Comp1 Comp2 Comp3

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Consider a system with three
nodes running an image
processing application.
The application has 3 components.
Comp3 requires a specialized
camera piece of hardware.

Node 1

Camera

Middleware

Application code

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Node 2

Camera

Middleware

Application code

Comp4 Comp5 Comp6

Re
si

lie
nc

e
M

an
ag

er

Operating System

Hardware

Node 3

Scenario 2: Comp1 on Node 1 fails.
 -> Use Comp4 on Node 3 (it provides
the same functionality)

X

Capturing Resilience

• The examples above provide resilience in two
ways:
1. Redeploy a component onto another node
2. Use an alternate implementation of the same

functionality provided by another component
• Method 1 requires a way to specify resource

requirements
• Method 2 requires a way to specify

functionality

Models Specify…
• Hardware

– Nodes (with security labels)
– Physical resources (e.g, camera)
– Computation resource limits (e.g., memory)
– Network links

• Software
– Components and their interfaces
– Required resources and % amounts
– Security labels

• Applications
– How components are connected
– The “critical” components
– Deployment (including constraints)

Modeling resilience
• Model three things:

– Functionality the system provides
– How the system can provide that functionality
– Deployment constraints

• Functionality:
– Hierarchically decompose functionality into basic functions

• How functionality is provided:
– Map functionality hierarchically to applications,

component assemblies or components
• Deployment constraints:

– Restrict how software is deployed onto computing nodes
and networks (e.g., application requires a camera)

Resilience Example
• Consider an example with three satellite nodes
• Satellite 1 contains:

– High-resolution (HR) camera
– Low-res (LR) camera
– GPU
– Ground link

• Satellite 2 contains:
– HR camera
– GPU
– Ground link

• Satellite 3 contains
– LR camera
– Ground link

• Each satellite has an instance of two different applications…

2 Applications

• Cluster Flight Application
 4 components

Provides access to/from ground.

Provides access to sat bus hardware.

Updates orbit based on ground commands.

Runs control loop.
Commands thruster through
bus interface.

2 Applications

• Wide-area imaging application
– Uses cameras on different nodes to create a combined image
– Each satellite runs an image grabber component (HR or LR)
– Only one instance of ImageProcessor runs at any time, but it can be

redeployed
Combines and processes individual images.
Requires a GPU on node.

Captures images.
Requires either a
HR or LR camera on node.

Functional Requirements

• Capture the functional breakdown required for the
mission
– Cluster flight
– Wide area imaging

• All functions map to application/component instances
• Failure of one component/hardware resource/network

link is used to compute whether the mission function is
unavailable.

• Thereafter an alternative configuration (if available)
can be chosen to recover the functionality.

Specifying Functionality I

• Define functionality (hierarchically)
– Specifies what must be present on system

Communication
to ground

Cluster flight Imaging service

Specifying Functionality - II

• For each functionality, specify how it is
provided

The classification functionality is provided
by the ImageProcessor Component.
Exactly 1 instance should be running.

The image capture functionality is
provided by the ImageGrabber
component.
At least 1 of these components must
be running.

Deployment Constraints

• One instance of CFA runs on each
node

• An application instance requires the
orbit manager and satellite bus
interface to be on the same node

Specifying Resource Requirements

• The ImageGrabber components need an LR or
HR camera

• The ImageProcessor components need a GPU

Operational requirements
• All components/Application have operational requirements

– CFA Application
• SameNode(OrbitManager,SatelliteBus)

– OrbitManager
• SameNode(CallSatThrusterCtrl)
• SameNode(GetStateVector)

– TrajectoryPlanner
• Atleast(1, (SatCommand_Subscriber,ReceiveSatCommand))

– ImageGrabber
• ImageGrabber _1: Atleast(1,(HR_1,LR_1))
• ImageGrabber _2: Atleast(1,(HR_2))
• ImageGrabber _3: Atleast(1,(LR_3))

– ImageProcessor
• ImageProcessor_1: Atleast(1,GPU_1)
• ImageProcessor_2: Atleast(1,GPU_2)
• Atmost(1,(ImageProcessor_1, ImageProcessor_2, ImageProcessor_3))

Calculating resiliency metric

• Question: how to measure the resiliency?
• Two ways to quantify:

– Worst case: Minimum number of failures that make
the mission infeasible

– Best case: Maximum number of failures that the
system can sustain while the mission remains feasible

• We translate the requirements and specifications
into an SMT problem which calculates the metrics

Resilience Metric
• Metric = [2,23]

– Assumption: all 6 functions are required
• Complete failure of Sat2

– ImageProcessor on Sat2 is out, another ImageProcessor on
Sat1 or Sat3 should be activated.

• Failure of GPU on Sat1
– GPU is required by the Image Processor
– Therefore, a reconfiguration is required which activates

image processor on Sat3
• Failure of Ground Link on Sat 1

– No reconfiguration is required. The ground command is
disseminated by either Sat2 or Sat3 via pub sub ports

Future Work

• Given a configuration and a failure, what is the
“optimal” reconfiguration?
– Consider increasing horizon
– Integrate empirical reliability measures

Questions?

	Quantifying Resilience in Component-Based Software Architecture Models
	Overview
	What is Resilience?
	Context for Resilience
	Modeling Overview
	Domain-Specific Modeling Language
	2 Resilience Scenarios
	2 Resilience Scenarios
	2 Resilience Scenarios
	Capturing Resilience
	Models Specify…
	Modeling resilience
	Resilience Example
	2 Applications
	2 Applications
	Functional Requirements
	Specifying Functionality I
	Specifying Functionality - II
	Deployment Constraints
	Specifying Resource Requirements
	Operational requirements
	Calculating resiliency metric
	Resilience Metric
	Future Work
	Questions?

