Quantifying Resilience in
Component-Based Software
Architecture Models

Daniel Balasubramanian

Abhishek Dubey, Nag Mahadevan,
Tihamer Levendovszky, Will Otte, Gabor
Karsai

Supported by USAF/AFRL under Cooperative
Agreement # FA8750-13-2-0050

Overview

Focus: how can component-based, software-
intensive systems be made more resilient?
— Through model-based techniques for design-time

architecture specification and analysis
accompanied by corresponding run-time support.

What is Resilience?

Webster:
— Capable of withstanding shock without permanent deformation or rupture
— Tending to recover from or adjust easily to misfortune or change
Technical:

— The persistence of the avoidance of failures that are unacceptably frequent or severe,
when facing changes. [Laprie, ‘04]

— Aresilient system is trusted and effective out of the box in a wide range of contexts, and
easily adapted to many others through reconfiguration or replacement. [R. Neches, OSD]

Intuitive:

— The ability to “bounce-back” after something changes

We focus on model-based development for Resilient Software Systems

— Design-time techniques + run-time support = resilience

Context for Resilience

Resilient Software Systems are needed in many domains: desktop
applications, web-based systems, collaborative systems, service-oriented
systems, etc.

Focus area: DREMS

Distributed: applications are executed on a distributed platform with
dynamically changing topology

Real-time: applications have to satisfy real-time requirements
Embedded: applications may interact with the physical world
Managed: applications are managed external by an authority
Systems

Examples:

On-board software for vehicles with networked processors
Swarm of UAVs executing wide-area surveillance missions
Distributed C2 systems with real-time requirements

Fractionated spacecraft (with wireless links) that provides a ‘platform as a
service’

Modeling Overview

* Development is centered around models

W s s e S S e

| = 2. Generate
L= = | | corresponding
e | run-time pieces.

| A =1 " g — - Software
- ' generator

Domain-Spec_ific Model

1. Resilience algorithm
calculates metrics for
specific architecture.

Design-time

)

App App
Comp Comp
m App-specific code

Middleware

Operating System

Hardware

Resilience Manager

Run-time System

3. Middleware
provides run-time
support.

Run-time

TTTTTTTTTTTTTTTTT

Domain-Specific Modeling Language

A DSML is used to define the resilient software architecture
Why a DSML?

— Existing modeling languages do not cover the entire development process and
are not integrated with comprehensive generators

— Lack of support for resilience in existing modeling languages (SysML, AADL)
What does a model enable?

— Specification of software architecture

— Code generation (app code, glue code, deployment scripts)

— System integration (integrating multiple applications, deployments)

— Analysis (resilience, scheduling)
What does a model contain?

— Software (communicating components)

— Hardware (the physical nodes, resources)

— Deployment of software onto hardware

— Resilience description

VANDERBILT UNIVERSITY
— e ————|
==~
= —F_—

=

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

2 Resilience Scenarios

Consider a system with three
nodes running an image
processing application.

The application has 3 components. @

. . . [=
Comp3 requires a specialized Application code 2
camera piece of hardware. Middleware &

Operating System

Hardware Camera

]
Image processing app :

Middleware :
I

Operating System

\ 4

Node 2

Application code

Resilience

Hardware Camera

Resilience
Manager

Middleware

Node 1
Operating System

Node 3

2 Resilience Scenarios

Consider a system with three
nodes running an image
processing application.

The application has 3 components.
Comp3 requires a specialized
camera piece of hardware.

Image processing app

Middleware

o
(5]
c

=
(%]
Q

o

Operating System

Hardware Car ra

Comp3
4

Application code :
1

Middleware I

1

1

1

Operating System

4
Hardware Camera

Resilience

Node 2

Node 1

Scenario 1: the camera on node 1 fails.
-> Redeploy Comp3 on Node 2

Application code

Middleware

Operating System

)
(%)
c

=
(%]
o

[

Manager

Node 3

2 Resilience Scenarios

Consider a system with three
nodes running an image
processing application.

The application has 3 components.
Comp3 requires a specialized
camera piece of hardware.

o
o
c

=
(7]
)

[

Operating System

Hardware Camera

Manager

Application code

Middleware

Operating System

Hardware Camera

)
(8]
c

=
(%]
o

o

Node 2

Node 1
Scenario 2: Compl on Node 1 fails.
-> Use Comp4 on Node 3 (it provides
the same functionality)

:
Application code

Middleware

Operating System

Resilience

Manager

Node 3

Capturing Resilience

 The examples above provide resilience in two
Ways:
1. Redeploy a component onto another node

2. Use an alternate implementation of the same
functionality provided by another component

* Method 1 requires a way to specify resource
requirements

* Method 2 requires a way to specify
functionality

Models Specify...

 Hardware
— Nodes (with security labels)
— Physical resources (e.g, camera)
— Computation resource limits (e.g., memory)
— Network links
e Software
— Components and their interfaces
— Required resources and % amounts
— Security labels
* Applications
— How components are connected
— The “critical” components
— Deployment (including constraints)

Modeling resilience

Model three things:

— Functionality the system provides

— How the system can provide that functionality

— Deployment constraints

Functionality:

— Hierarchically decompose functionality into basic functions
How functionality is provided:

— Map functionality hierarchically to applications,
component assemblies or components

Deployment constraints:

— Restrict how software is deployed onto computing nodes
and networks (e.g., application requires a camera)

Resilience Example

Consider an example with three satellite nodes
Satellite 1 contains:
— High-resolution (HR) camera
— Low-res (LR) camera
— GPU
— Ground link
Satellite 2 contains:
— HR camera
— GPU
— Ground link
Satellite 3 contains
— LR camera
— Ground link
Each satellite has an instance of two different applications...

2 Applications

* Cluster Flight Application

= 4 components

Provides access to sat bus hardware.

}

2 SendSatStateVector
SatThrusterCird

SatelliteBusinterface

Runs control loop.
Commands thruster through > CallSatThrusterCtri ' UpdateOrbit @

. SatStatePub GetSatStateVector @
bus interface. SatStateSub

Orbithanager

@) (1)
- SatCommand UpdateQrbit >

SendHewCommand] .
* catCommand RecvSatCommand *

T Groundlnterface T TrajectoryPlanner

Provides access to/from ground. Updates orbit based on ground commands.

2 Applications

* Wide-area imaging application
— Uses cameras on different nodes to create a combined image
— Each satellite runs an image grabber component (HR or LR)

— Only one instance of ImageProcessor runs at any time, but it can be

redeployed
Combines and processes individual images.

Requires a GPU on node. |

Image_grabber i 1
) lmageFrocessaor
Captures images.

Requires either a
HR or LR camera on node.

=

-
]
-
-
1]
-

Image_grabber 1 2

—

Image_grabber i 3

Functional Requirements

Capture the functional breakdown required for the
mission

— Cluster flight

— Wide area imaging

All functions map to application/component instances
Failure of one component/hardware resource/network

link is used to compute whether the mission function is
unavailable.

Thereafter an alternative configuration (if available)
can be chosen to recover the functionality.

Specifying Functionality |

* Define functionality (hierarchically)

— Specifies what must be present on system

Communication Cluster flight Imaging service
to ground
COMMANDGATEWAY CLUSTERFORMATION IMAGING

| /

© ® O

TrajectoryPlanner IMAGE_CAPTURE CLASSIFICATION

Specifying Functionality - I

* For each functionality, specify how it is

provided

The classification functionality is provided
by the ImageProcessor Component.
Exactly 1 instance should be running.

The image capture functionality is
provided by the ImageGrabber
component.

At least 1 of these components must

m

CLASSIRICATION

IE HR2

Ima
H1
LR1 II‘ b
LR2
LR3

ImageProcessor_i

IMAGE PTURE

be running.

[R] [R] [R]

HR HR HR
Ima [I] LR: Ima [I] LR: Ima [I] LR:
ImagaGrabber_i ImageGrabber i ImageGrabber_i

CLASSIFICATION far Kind
Attributes | Preferences I Froperties

Composzitian ExACTLY

Cardinality 1
IMAGE_CAPTURE far Kind
Attributes | Preferences | Properties
Composzitian ATLEAST
Cardinality 1

Deployment Constraints

e Oneinstance of CFA runs on each
node

* An application instance requires the
orbit manager and satellite bus
interface to be on the same node

> SendSatStateVector
SatThrusterCir *

SatelliteBusinterface

VANDERBILT UNIVERSITY
— e ————|
==~
= —F_—

—rr
—————|
INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

Aggregate | Inheritancel Meta |

M

=-4* RTS5
ﬁ Hardware
(-2 MewRequirements
B3 Software
£l Orhiter_Package
Eli ApplicationList
RO e
- WAM_IPA,
-G DefinitionList
i ImplementationList
-] WAMD efinition
i whaMImplementation
[-{# SoftwareBundieList
[H-_] TraitDefinitions
F- (gl Sestem

CFa for Kind

Attributes | Preferences F'ru:uperties|

P SatStatePub GetSatStateVector @

(1)
> CallSatThrusterCir UpdateOrbit .-
- SatStateSub *

Orbithanager

(1) 3
- SatCommand
SendiewCommand #® RecvSatCommand
SatCommand »

TrajectaryFlanner

UpdateOrbit 2

Groundinterface

Operational Requirement Samelode(0rbitk anager, S ateliteBusinterface] .

m_ |

applicationl dentifier
environmenty ariables

TTTTTTTTTTTTTTTTT

Specifying Resource Requirements

* The ImageGrabber components need an LR or
HR camera

ImageFroceszor faor Kind

aftributes | Preferences | Properties
Rezource Fequireme GPU -~ H

ImageFrocessor

* The ImageProcessor components need a GPU

Image_grabber |

Image_grabber_i fior Kind
D - Attributes i
ImageGrabber © Preferences I Froperties
-t Resource Requirerne LR_CAMERA, A
HF_CAMERA,

Operational requirements

All components/Application have operational requirements

— CFA Application
* SameNode(OrbitManager,SatelliteBus)

— OrbitManager
* SameNode(CallSatThrusterCtrl)
 SameNode(GetStateVector)

— TrajectoryPlanner
* Atleast(1, (SatCommand_Subscriber,ReceiveSatCommand))

— ImageGrabber
* ImageGrabber 1: Atleast(1,(HR_1,LR 1))
* ImageGrabber 2: Atleast(1,(HR_2))
* ImageGrabber 3: Atleast(1,(LR_3))
— ImageProcessor
* ImageProcessor_1: Atleast(1,GPU _1)

* ImageProcessor_2: Atleast(1,GPU_2)
e Atmost(1,(ImageProcessor_1, ImageProcessor_2, ImageProcessor_3))

Calculating resiliency metric

* Question: how to measure the resiliency?

* Two ways to quantify:
— Worst case: Minimum number of failures that make
the mission infeasible
— Best case: Maximum number of failures that the
system can sustain while the mission remains feasible
 We translate the requirements and specifications
into an SMT problem which calculates the metrics

Resilience Metric

Metric = [2,23]
— Assumption: all 6 functions are required
Complete failure of Sat2

— ImageProcessor on Sat2 is out, another ImageProcessor on
Satl or Sat3 should be activated.

Failure of GPU on Satl

— GPU is required by the Image Processor

— Therefore, a reconfiguration is required which activates
image processor on Sat3

Failure of Ground Link on Sat 1

— No reconfiguration is required. The ground command is
disseminated by either Sat2 or Sat3 via pub sub ports

Future Work

* Given a configuration and a failure, what is the
“optimal” reconfiguration?
— Consider increasing horizon

— Integrate empirical reliability measures

Questions?

	Quantifying Resilience in Component-Based Software Architecture Models
	Overview
	What is Resilience?
	Context for Resilience
	Modeling Overview
	Domain-Specific Modeling Language
	2 Resilience Scenarios
	2 Resilience Scenarios
	2 Resilience Scenarios
	Capturing Resilience
	Models Specify…
	Modeling resilience
	Resilience Example
	2 Applications
	2 Applications
	Functional Requirements
	Specifying Functionality I
	Specifying Functionality - II
	Deployment Constraints
	Specifying Resource Requirements
	Operational requirements
	Calculating resiliency metric
	Resilience Metric
	Future Work
	Questions?

