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Results

Motivation:
* NASA's Constellation & Orion Efforts:
* How can we analyze at complex system scales?
» What are the margins to failure in a complex system?
» Where should further study be directed to reduce uncertainty and increase safety margins?
+ Aviation Safety:
» How can we learn behaviors within hybrid systems?
» How can we quantify the uncertainty in our predictions about these systems?
» Can we leverage black-box and white-box testing in combination to learn more about potential system behaviors?
Applications & Results:
* NASA’s Pad Abort 1 Simulation and Experiment and the Exploration Flight Test 1:
» Can we learn the margins to failure?
» Can we effectively analyze off-nominal conditions with hundreds of inputs and outputs over tens of thousands of
runs?
+ Adaptive Flight Control:
« Can we automatically quantify types of behaviors from time series?
» Can we predict the time series?
» Can we predict a different key parameter (like time-to-failure or a failure boundary) directly from a current input
state?
» System-Level Safety Test Case Generation:
» For a nonlinear system in combination with a unit that can be white-boxed, can we leverage a combination of
machine learning and formal techniques to exercise the unit from system-level inputs?
» Terminal TSAFE - air traffic control:
» Can we predict a failure boundary in the system given two input states (for vehicles).
Future Plans:
* Integration and release of the toolchains.
» Expansion of analysis to time series inputs.
+ System-level test case generation for the aerospace domain.
» Pareto frontier generation.
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Overview

Pad Abort 1 (PA-1) was the only test of the launch abort
system for Orion.

Modeling and Simulation (M&S) was expected to explore a
wide range of design alternatives to identify a robust, safe Pad
Abort system.

The PA-1 models and simulators were high fidelity, and
provided iterative analysis for engineering the Pad Abort
system and PA-1 flight test. The analysis drove redesigns.

Question: Can we characterize PA-1 behavior over the
possible flight envelope (Possible), instead of just the ideal
envelope (Ideal)?
Traditional “black box” validation testing typically
validates that the system has acceptable behavior for
an isolated operating point.
It ignores trends, sensitivities and emergent behavior in
the dataset.
Problem: Expanding simulations over the possible flight
envelope means that there are many runs (10K to 100K) over
100’s of variables. Finding sensitivities in this space would
require hours upon hours of expert time
Problem: Pure statistical correlation often fails to find key
parameters.

POSSIBLE FLIGHT
ENVELOPE

ENVELOPE
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6. REQUIREMENTS FOR APPROACHES WITH A MISSED APPROACH LESS THAN RNP 1.0.
a. No single-point-of-failure can cause the loss of guidance compliant with the RNP
value associated with a missed approach procedure.

From: FAA Advisory Circular 90-101: Approval Guidance for RNP Procedures with SAAAR. 2005.

Problem Domain:

Large (thousands of
independent variables),
complex, non-linear, with
interacting modal, continuous,
periodic and stochastic
parameters.

Photo from NewZealandView.com

The Unreasonable Effectiveness of Data
--Alon Halevy, Peter Norvig, and Fernando Pereira

Scene Completion Using Millions of Photographs
--James Hayes, Alexei Efros (CMU) ,
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MARGINS (Model-based Analysis of Realizable Goals in Systems)

MARGINS is a set of machine learning e
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Pad Abort 1 End Result: Much larger
testing space for the same level of effort.

Standard testing Testing using MARGINnS
No automated analysis Color indicates “risk classes

MARGINnS enabled us to run massive experiments
across a wide range and focus down to find the root
cause of a problem. Reduced guessing and false
leads.

This allowed us to troubleshoot unexpected
results:
* Thrust instability - why? (A mixture of
nhysics and model problems.)
ow do errors in the GRAM winds
models (widely used environmental
models) impact PA-1 experiments?
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Orion EFT-1 Results:
TWO ORBITS @ 20,000 MPH ENTRY @ 3671 MILE APOGEE @ 286 DEGREE INCLINATION MARG I ns too‘
extended (Critical

SYSTEM (LAS) Launch Vehicle/

EXPLORATION FLIGHT TEST ONE OVERVIEW

Upper Stage Disposal Upper Stage Separation

Factors Tool -

MODULE (CM)
Orion

Brion o Launch At Sysem Pressbhurger 2013) to

STAGE f (LAS) Jettison

g _ determine measures

DELTA IV A

e N~ Engine Bums of influence.

Orion/Upper Stage
Separation

LAUNCH CONFIGURATION

Body-rate induced Forward Bay Cover Jettison
Total alpha (angle of attack) at FBC Jettison
Touchdown heading

Range at touchdown to target

Total Reaction Control System propellant used
Thruster pulse count

Number of instances of simultaneous thruster firing
Bank saturation

Maximum aerodynamic load

Objectives and Constraints
for the EFT-1 Sim:

© o NOoO Ok~

10. Backshell temperature, heat load, etc.
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o : - “Treatment” learning:
X axis: initial pitch at entry interface success/failure prone intervals
altitude
Aerothermal constraint

Total deviation: 793,630263
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Future Plans

EFT-1 - the Critical Factors Tool

1D and 2D analyses map input conditions to risk for

failure.

In turn, the critical input factors for each of the
objectives and constraints are identified, and put into a

table.
5
Domain experts examine results to understand drivers
of behavior and to suggest further refinement of
models.
Visualizations strongly affect the domain experts ability
to see and to believe the effects.
Body-rate [ T o t a 1| Touch- Range to (R C S| Thruster [Instances of |B a n k| Aero- Backshell
Induoced | Alpha at|d o w n | Target Prop|(Pulse|Simultaneous |Satura-|dyvnamic| Temperature
F B C|F B C| Heading Used Count Thruster tion Load
Jettison Jettison Firing
A ++ ? ? ++ +
L ++ D + D +D - ++ ++D
1 +U ++ U |+ U + 2D ?
2 ? ? +D
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Future Plans

Adaptive Flight Control—
Predicting Time Series

In order to determine the failure boundaries for trajectories with
humans tightly-coupled in the loop, we need to be able to
predict highly-nonlinear time series of varying length.
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T ~ 250 T = 350..500 Adaptive Flight Control—

Run #3 Run #14 - - - -
L /\/\/ Predicting Time Series
< : : . I By analyzing the full trajectories, we were able to find classes of
: behaviors that were strongly correlated with time-to-failure.
Aun #6 1 Aun #20 Histogram of Flight Length (T) for Failures
é é- ; /\/\/ . . o
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sfMCP )
o Adaptive Flight Control—
P ! Combining Testing with Model
rogram vr-gece opt nstrumente -
el S o I iy Checking
Purme Ly 11vm-gec Bitcode | uwm The IFCS sim also contained a computer error —
sources cometer e occasionally would produce NANSs.
Final
MCP: An Explicit State Model | Neither model checking nor MARGINS alone
Checker for C++ could find the error.

mcp
tool

MCP ran out of memory the first time through the OLNNs
With the OLNNs removed (PID control only), MCP ran out of memory after 7 times through the loop.
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NAN errors are most associated with roll gains (but the correlation isn’t perfect).
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Strategy: Global machine-
learning based testing gave

us system-level inputs that Adaptive Flight Control—

would lead to failure after Combining Testing with Model
some time steps. The system Checking

was already decomposed

(Simulink).

Strategy: Flag the first NAN, treat the
inputs to the module for that time step as
lscrors in the test case for the model checker.

Uad1
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e

Plroll_ch_in P

: ** starting the model **
| U_p_acit -—— Step #9

; R O -—— rtu_U_p_odl = 5.2084576e+85 (size 8)
] ol mmmuﬁ ;.”w%m ) : -— nfl = -7.478916e+01
— : C : -— nfl = -5.265324e+05
mmﬁﬂm“m4: Roll_nn é -— nfl = 5.205324e+685
: -—— mfl = inf
——— mfl = inf
. : -— mfl = B.060080e+00
InStrumentatiOn -— mfl = B.000080e+868, |b-=nfl = B.8600000e+00

—--- uldd = nan
i GENZ_w_testZ_Roll_nn.c{348): Assertion failure: 8
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Muttiple Monte-Carto Simulations Airplane system test case generation—
Machine learning plus concolic
Sy st Level Inputs (i) -
v J execution.
System S
1= i)
it Leved inputs (i)
UnitU Symbolic
Executions System Inputs (l): Pt, Ps, Alt
4z )
0.4
P 1.4
Concrete Executions Subsonic: Ma = ,15 I:(—t) — 1‘
P
System-level aerodynamic equations )
(giving Mach number from Pitot tube Supersonic: P, 576 Ma®> \°° 2.8Ma* — 0.4
sensor) highly non-linear across two P, 5.6Ma? — 0.8 2.4
regimes. Strategy: learn an After 25 tests—
approximation to the behavior. Unit Inputs (i): Ma, Cf, Cfbterm, Cfterm
N-factor:
.. . . 16 covered, Cme] )
Digital DATCOM provides an estimate 10 uncovered fo s 0000 1 ibsasaon @
of drag coefficient — branching is linear B M e e
in the Mach number. Strategy: a5 danatan /" aaseseen) &1
explicitly solve for the Mach number Model based: § tEE T
. " . . . 21 Ma < (780000 / 1000000) S, ...)
and friction coefficients that will covered, R
. . . 12 not covered
exercise each path using concolic \_ Y,

execution. \_ )
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Future Plans

Terminal TSAFE—uncertainty
quantification and failure envelope

detection.

Using the algorithm in the flow chart, we automatically-
detected a safety boundary for a conflict detection
algorithm. The axes are the altitude offsets for two
planes landing at the same airport. The triangle is a
region in which the time to loss of separation is
unacceptable. The solid blue and cyan points were
automatically selected by our learning algorithm as it

discovered the safety envelope.
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Lessons Learned:

1. For large, non-linear systems, you need a large input space to learn from.
2. The independence assumption inherent to many traditional statistical techniques is

often NOT a good assumption.
3. You are likely to need to look at a combination of scalar and time-series behaviors to

understand aerospace systems.
4. Analysts and domain experts need pictures in order to understand what you are telling

them — wherever possible.
5. A combination of machine learning-based testing and more formal techniques can get

you farther than either alone.
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Current efforts:

1. Analyses that allow for time-series based
inputs.

2. Pareto Frontier-based analyses.

3. Clean-up and integration of all of our current oy Lo i
tools. (Target date: October 2015)
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