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Driving Problem 

ÅAdvanced UAVs. 

»Must automate pilot function using ñAI-typeò 
software. 

» Causes certification difficulties. 

» Workload is dynamic and computationally 
intensive. 

» Suggests the use of multicore. 

» Our focus: What should the OS look like? 

ïParticular emphasis: Real-time constraints. 

» Have worked some with Northrop 

Grumman on this. 
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Multicore in Avionics: The Good 

ÅEnables                                                         

computationally-                                          

intensive workloads                                 

to be supported. 

ÅEnables SWAP                                         

reductions. 

ÅMulticore is now the standard platform. 

Core 1 Core M 

L1 L1 

L2 

… 
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Multicore in Avionics: The Bad & Ugly 

ÅInteractions across                                    

cores through                                          

shared hardware                                  

(caches, buses,                                                                                            

etc.) are difficult to                                                

predict. 

ÅResults in very conservation execution-time 

estimates (and thus wasted processing 

resources). 

Core 1 Core M 

L1 L1 

L2 

… 

Approach 1:  Accept this fact.  Use resulting 

slack for less-critical computing. ñMulticore 

processors are big slack generators.ò 

Approach 2: Manage shared caches more 

predictably so that more accurate execution 

time predictions can be made. 
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What is ñLess Criticalò? 

ÅWe assume tasks are assigned to criticality 
levels, like in DO-178B: 
» Level A: Catastrophic. 
ïFailure may cause a crash. 

» Level B: Hazardous. 
ïFailure has a large negative impact on safety or 
performanceé 

» Level C: Major. 
ïFailure is significant, buté 

» Level D: Minor. 
ïFailure is noticeable, buté 

» Level E: No Effect. 
ïFailure has no impact. 

more 

conservative 

design 

less 

conservative 

design 
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Outline 

ÅBackground. 

» Real-time scheduling basics. 

» Mixed-criticality scheduling. 

ÅMC2: Proposed mixed-criticality 

architecture. 

Å$MANRT: Proposed framework for 

managing shared caches. 

ÅFuture research plans. 
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Task Model Assumed in this Talk 

ÅSet {T = (T.e,T.p)} of periodic tasks. 

» T.e = Tôs worst-case per-job execution cost. 

» T.p = Tôs period & relative deadline. 

» T.u = T.e/T. p = Tôs utilization. 

0 10 20 30 

T = (2,5) 

5 15 25 

U = (9,15) 

2 5 

One Core Here 

job deadline 

job release 
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Task Model Assumed in this Talk 

ÅSet {T = (T.e,T.p)} of periodic tasks. 

» T.e = Tôs worst-case per-job execution cost. 

» T.p = Tôs period & relative deadline. 

» T.u = T.e/T. p = Tôs utilization. 

0 10 20 30 

T = (2,5) 

5 15 25 

U = (9,15) 

2 5 

One Core Here 
2/5 

job deadline 

job release 
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Multiprocessor Real-Time Scheduling 

Two Approaches: 

Steps: 
1. Assign tasks to processors (bin 

packing). 

2. Schedule tasks on each 

processor using uniprocessor 

algorithms. 

Partitioning Global Scheduling 

Important Differences: 
Å One task queue. 

Å Tasks may migrate among 

the processors. 
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Hard vs. Soft Real-Time 

ÅHRT: No deadline is missed. 

ÅSRT: Deadline tardiness is bounded. 

» A wide variety of global scheduling 

algorithms are capable of ensuring 

bounded tardiness with no utilization loss. 
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Scheduling vs. Schedulability 
Whatôs ñUtilization Lossò? 

ÅW.r.t. scheduling, we actually care about two 

kinds of algorithms: 

» Scheduling algorithm (of course). 

ïExample: Earliest-deadline-first (EDF): Jobs with earlier 

deadlines have higher priority. 
 

» Schedulability test. 

Test for 

EDF 
t 

yes 

no 

no timing requirement 

will be violated if t is 

scheduled with EDF 

a timing requirement 

will (or may) be  

violated é 

Utilization loss occurs when test requires 

utilizations to be restricted to get a ñyesò answer. 
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Ensuring Bounded Tardiness 

ÅUnder partitioning & most global algorithms, 
overall utilization must be capped to avoid 
deadline misses. 
» Due to connections to bin-packing. 

ÅException: Global ñPfairò algorithms do not 
require caps. 
» Such algorithms schedule jobs one quantum at a time. 
ïMay therefore preempt and migrate jobs frequently. 

ïPerhaps less of a concern on a multicore platform. 

ÅUnder most global algorithms, if utilization is not 
capped, deadline tardiness is bounded. 
» Sufficient for soft real-time systems. 

Example Global-EDF scheduleé 

0 10 20 30 

T = (2,3) 

5 15 25 

U = (2,3) 

V = (2,3) 

On Processor 1 On Processor 2 
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Ensuring Bounded Tardiness 

ÅUnder partitioning & most global algorithms, 
overall utilization must be capped to avoid 
deadline misses. 
» Due to connections to bin-packing. 

ÅException: Global ñPfairò algorithms do not 
require caps. 
» Such algorithms schedule jobs one quantum at a time. 
ïMay therefore preempt and migrate jobs frequently. 

ïPerhaps less of a concern on a multicore platform. 

ÅUnder most global algorithms, if utilization is not 
capped, deadline tardiness is bounded. 
» Sufficient for soft real-time systems. 

Example Global-EDF scheduleé 

0 10 20 30 

T = (2,3) 

5 15 25 

U = (2,3) 

V = (2,3) 

Tardiness is at most one quatum. 
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Mixed-Criticality Scheduling 
Proposed by Vestal [2007] 

ÅEach task has an execution cost 

specified at each criticality level (A-E). 

» Costs at higher levels are (typically) larger. 

ÅExample: 

T.eA = 20, T.eB = 12, T.eC = 5, é 

ÅRationale: Will use more pessimistic 

analysis at high levels, more optimistic 

at low levels. 

 



Jim Anderson 17 S5 Conf., 2012 

Mixed-Criticality Scheduling 
Proposed by Vestal [2007] 

ÅEach task has an execution cost 

specified at each criticality level (A-E). 

» Costs at higher levels are (typically) larger. 

ÅThe task system is correct at level X iff 

all level-X tasks meet their timing 

requirements assuming all tasks have 

level-X execution costs. 

 

Some ñweirdnessò here: Not just one system 

anymore, but five: the level-A system, 

level-B,é 
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Outline 

ÅBackground. 

» Real-time scheduling basics. 

» Mixed-criticality scheduling. 

ÅMC2: Proposed mixed-criticality 

architecture. 

Å$MANRT: Proposed framework for 

managing shared caches. 

ÅFuture research plans. 
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MC2: Mixed-Criticality on Multicore 
Our Proposed Mixed-Criticality Architecture (Joint with NGC) 

ÅWe assume five criticality levels, A-E, like in        

DO-178B. 

ÅWe statically prioritize higher levels over lower 

ones. 

ÅWe assume: 

» Levels A & B require HRT guarantees. 

» Levels C & D require SRT guarantees. 

» Level E is non-RT. 

ÅRight now, weôre assuming a static system. 

ÅWeôre currently working on enabling dynamic 

changes at levels C-E. 
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Scheduling in MC2 

ÅLevel A (HRT): Partitioned, cyclic 

executive (table-driven). 
ïCEs are the de facto standard for highly critical 

workloads. 

ÅLevel B (HRT): Partitioned EDF (or RM). 
ïPEDF (PRM) is a good HRT scheduler. 

ÅLevels C & D (SRT): Global EDF. 
ïGEDF is a good SRT scheduler. 

ÅLevel E (Best Effort): BE Scheduler. 
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MC2 

CE CE CE CE 

EDF EDF EDF EDF 

G-EDF 

G-EDF 

Best Effort 

Level A 

Level B 

Level C 

Level D 

Level E 

Core 1 Core 2 Core 3 Core 4 

higher 

(static) 

priority 

lower 

(static) 

priority 
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Reclaiming Spare Capacity 

ÅMC2 does this in two ways: 

» At design time: This occurs when we 
validate level-X RT guarantees. 
ïThis requires assuming worst-case level-X 

execution costs. 

» At run time: MC2 uses a technique called 
ñslack shiftingò to re-allocate available 
slack. 
ïThis exploits the fact that actual costs (at 

whatever level) may be less than worst-case 
costs. 
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MC2 Papers 
(All papers available at http://www.cs.unc.edu/~anderson/papers.html) 

Å M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. 

Scoredos, ñMixed Criticality Real-Time Scheduling for Multicore 

Systems,ò Proc. of the 7th IEEE International Conf. on 

Embedded Software and Systems, 2010. 

» Focus is on schedulability: How to check timing constraints at each 

level and ñshiftò slack? 

Å J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, 

ñRTOS Support for Multicore Mixed-Criticality Systems,ò Proc. of 

the 18th IEEE Real-Time and Embedded Technology and 

Applications Symp., 2012. 

» Focus is on RTOS design: How to reduce the impact of RTOS-

related overheads on high-criticality tasks due to low-criticality 

tasks? 
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Outline 

ÅBackground. 

» Real-time scheduling basics. 

» Mixed-criticality scheduling. 

ÅMC2: Proposed mixed-criticality 

architecture. 

Å$MANRT: Proposed framework for 

managing shared caches. 

ÅFuture research plans. 
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$MANRT: Basic Idea 

ÅBuilds upon an idea called page coloring. 

»Pages of physical memory are ñcoloredò based 

on where their contents map in the cache. 

» Accesses to differently colored pages cannot 

cause cache conflicts. 

ÅNew twist: Require tasks to ñlockò their 

needed colors using a real-time locking 

protocol. 

» Exploits recent work at UNC on optimal real-time 

multiprocessor locking protocols. 
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Page Coloring Review 

Å512 KB cache size. 

Å64 byte cache line size. 

ÅResults in 8192 cache lines. 

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Assume, for the purpose of 

illustration, that we have a small, 

direct-mapped cacheé 
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Page Coloring Review 

Å8192 cache lines of 64 bytes each. 

Å4 KB physical page. 

ÅThere are 64 cache lines per page. 

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

4 KB pages 
Groups of 64 

cache lines 

per page. 
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Page Coloring Review 

ÅPage 0 maps to cache lines {0, é, 63}. 

ÅPage 1 maps to cache lines {64, é, 127}. 

ÅThe mapping wraps after 128 pages. 

 

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

The mapping 

wraps after 

128 pages. 

This mapping is 

based upon bits 

of the physical 

memory address. 
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ÅThe mapping wraps after 128 pages. 

ÅThe 128 disjoint sets of pages are assigned 

128 colors. 

ÅAccesses to differently-colored pages canôt 

cause cache conflicts. 

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Page Coloring Review 
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ÅIn practice, set associative (not direct 

mapped) caches are used. 

ÅIn a 2-way set associative cache, there are 64 

colors instead of 128 colors. 

ÅTwo entire pages of the same color may be 

loaded without cache conflicts. 

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Page Coloring Review 
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ÅIn an n-way set associative cache colored this 

way, n pages of the same color can be loaded 

without conflict. 

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Page Coloring Review 
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Colors as Shared Resources 

ÅDedicating a page color to each real-time 

task has been used to implement cache 

partitioning. 

» However, this limits the number of real-time 

tasks that can run concurrently. 

» Since each task is assigned only a subset 

of the cache, thrashing can result. 

ÅOur idea: Use multiprocessor real-time 

locking protocols to enable tasks to 

ñlockò their needed colors. 
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Cache Coloring Synchronization Problem 

ÅEach color is a shared resource with n 

replicas (for an n-way set associative 

cache). 

ÅBefore accessing a physical page, a 

task must ñacquireò or ñlockò a replica of 

the corresponding color. 
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Solving this Synchronization Problem 

ÅEssentially need to                               

support ñnestedò                                     

accesses of replicated                      

resources on a                          

multiprocessor. 

ÅProtocols in these papers do this with 

asymptotically optimal worst-case blocking: 
» B. Ward and J. Anderson, ñSupporting Nested Locking in 

Multiprocessor Real-Time Systems,ò Proc. of the 24th Euromicro 

Conf. on Real-Time Systems, 2012. 

» B. Ward and J. Anderson, ñNested Multiprocessor Real-Time 

Locking with Improved Blocking.ò  

Example Job: 

   lock a replica of red; 

      access a red page; 

      lock a replica of the color blue; 

         access a blue page; 

      unlock the blue replica; 

   unlock the red replica 
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ÅWe call the resulting framework $MANRT:  

» Cache ($) MANagement for Real-Time systems. 
ïDescribed in: C. Kenna, J. Herman, B. Ward, and J. Anderson, ñMaking 

Shared Caches More Predictable on Multicore Platforms.ò 

ÅJust finished a first prototype assuming: 

 

 

 

 
» where coloring is w.r.t. an 8MB 16-way L3 cache (the 

last level cache).  

$MANRT 

RM RM RM RM 

Best Effort 

HRT 

BE 

Core 1 Core 2 Core 3 Core 4 
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Impact on Worst-Case Execution Times 

(WCETs) 

ÅAssessed by recording observed WCETs 

for benchmark task systems under: 

1. $MANRT; 

2. page coloring but no color locking; 

3. no cache management. 

ÅThe following graphs show scaling factors 

x/y where x is WCET under (2) or (3) and y 

is WCET under (1). 



Jim Anderson 37 S5 Conf., 2012 

Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 

The amount of the 

cache a task may 

access. 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 

The amount of the 

cache a task may 

access. 

The amount of the 

cache a job of a 

task may access. 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 

Cache Footprint (KB) 

S
c
a
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g
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a

c
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r 

No Cache Mangement. 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 

Cache Footprint (KB) 

S
c
a
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g

 F
a

c
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r 

No Cache Mangement. 

Coloring Only. 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 

Cache Footprint (KB) 

S
c
a

lin
g
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a

c
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With no cache 

mangement, WCETs 

can be 8X higher than 

$MANRT. 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 

Cache Footprint (KB) 

S
c
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With coloring only, 

WCETs can be 

6.5X higher. 
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Example WCET Graph 
WCET vs. Cache Footprint (WSS Fixed at 128KB) 
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Example WCET Graph 
WCET vs. WSS (Cache Footprint Fixed at 5MB) 
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Example WCET Graph 
WCET vs. WSS (Cache Footprint Fixed at 5MB) 

WSS (KB) 
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Example WCET Graph 
WCET vs. WSS (Cache Footprint Fixed at 5MB) 

WSS (KB) 
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No Cache Mangement. 

Coloring Only. 
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Example WCET Graph 
WCET vs. WSS (Cache Footprint Fixed at 5MB) 

WSS (KB) 

S
c
a
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g
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a

c
to

r 

Scaling factors decrease 

with increasing WSS from 

the 8X and 6.5X factors 

seen earlier. 
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Example WCET Graph 
WCET vs. WSS (Cache Footprint Fixed at 5MB) 
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Impact on Schedulability 

ÅWe experimentally measured two 

factors: 

» Average deadline miss ratio 

= percentage of jobs that miss deadlines; 

» Average relative tardiness 

= tardiness/period. 
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Example Schedulability Graph 
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Example Schedulability Graph 
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB) 

WSS (KB) 

A
v
g

. 
M

is
s
 R

a
ti
o

 



Jim Anderson 55 S5 Conf., 2012 

Example Schedulability Graph 
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB) 

WSS (KB) 
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No Cache Mangement. 

Coloring Only. 

$MANRT. 
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Example Schedulability Graph 
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB) 

WSS (KB) 
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Significant deadline 

miss ratios. 
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Example Schedulability Graph 
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB) 

WSS (KB) 
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Significant deadline 

miss ratios. 

Almost no misses. 
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Example Schedulability Graph 
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Example Schedulability Graph 
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Example Schedulability Graph 
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Example Schedulability Graph 
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB) 
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No Cache Mangement. 

Coloring Only. 

$MANRT. 
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Example Schedulability Graph 
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Significant tardiness. 
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Example Schedulability Graph 
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Significant tardiness. 

Almost no tardiness. 
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Example Schedulability Graph 
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB) 
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Additional Schedulability Study 

ÅFor certification, analytically assessed 

schedulability is probably more important. 

ÅTo evaluate this, we: 

» randomly generated a number of HRT task 

systems with varying total utilization for a 4-core 

machine; 

» assessed schedulability analytically assuming 

either $MANRT or no $MANRT but a WCET 

scaling factor. 

ïEarlier experiments suggest such factors could be 8 

or higher in practice. 



Jim Anderson 66 S5 Conf., 2012 

Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 

Plots indicate the fraction 

of generated task systems 

deemed (by analysis) to be 

ñschedulable.ò 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 

Total HRT Utilization 
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Scaling factor 

of 1.0. 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 

Total HRT Utilization 
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Scaling factor 

of 1.5. 



Jim Anderson 72 S5 Conf., 2012 

Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 
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Scaling factor 

of 2.0. 



Jim Anderson 73 S5 Conf., 2012 

Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 

Total HRT Utilization 
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b
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$MANRT (same 

as 2.0 in this case). 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 

Total HRT Utilization 
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Scaling factors of 4.0 to 8.0 

(in line with our earlier 

measurements). 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 

Total HRT Utilization 
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With a total HRT utilization of ~1.25, 

$MANRT successfully scheduled 

almost all systems, but only a tiny 

fraction could be scheduled assuming 

a (small) scaling factor of 3.0. 
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Example Schedulability Graph 
Cache Footprint Fixed at 2.56 MB 
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Outline 

ÅBackground. 

» Real-time scheduling basics. 

» Mixed-criticality scheduling. 

ÅMC2: Proposed mixed-criticality 

architecture. 

Å$MANRT: Proposed framework for 

managing shared caches. 

ÅFuture research plans. 
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ÅExtend $MANRT by considering: 

» color-assignment schemes; 

» its use in non-partitioned systems; 

» its impact w.r.t. tool-produced WCETs; 

» its impact when controlling all physical 

pages (so far, weôve only looked at non-

shared task data pages); 

» its use when systems may change 

dynamically. 

Future Research Goals 
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ÅIntegrate $MANRT within MC2: 

»may want to be more ñparsimoniousò w.r.t. 

ñhigh-criticality colors,ò more optimistic w.r.t. 

ñlow-criticality colorsò; 

»an appropriate ñfactoringò between the RTOS 

and middleware is needed. 

ÅImprove our synchronization-related 

analysis. 

ÅExperiment with realistic workloads. 

» Some of you could really help us here! 

 

Future Research Goals (Contôd) 
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URLs 

ÅAll of our code can be found at:  

» https://wiki.litmus-rt.org/litmus/Publications. 

ÅAs mentioned earlier, all referenced 

papers can be found at: 

» http://www.cs.unc.edu/~anderson/papers.html. 

https://wiki.litmus-rt.org/litmus/Publications
https://wiki.litmus-rt.org/litmus/Publications
https://wiki.litmus-rt.org/litmus/Publications
http://www.cs.unc.edu/~anderson/papers.html
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Thanks! 

ÅQuestions? 


