
Jim Anderson 1 S5 Conf., 2012

A Multicore Real-Time Mixed-

Criticality Framework for Avionics

Jim Anderson

University of North Carolina at Chapel Hill

Work Supported by AFOSR and AFRL

Jim Anderson 2 S5 Conf., 2012

Driving Problem

ÅAdvanced UAVs.

»Must automate pilot function using ñAI-typeò
software.

» Causes certification difficulties.

» Workload is dynamic and computationally
intensive.

» Suggests the use of multicore.

» Our focus: What should the OS look like?

ïParticular emphasis: Real-time constraints.

» Have worked some with Northrop

Grumman on this.

Jim Anderson 3 S5 Conf., 2012

Multicore in Avionics: The Good

ÅEnables

computationally-

intensive workloads

to be supported.

ÅEnables SWAP

reductions.

ÅMulticore is now the standard platform.

Core 1 Core M

L1 L1

L2

…

Jim Anderson 4 S5 Conf., 2012

Multicore in Avionics: The Bad & Ugly

ÅInteractions across

cores through

shared hardware

(caches, buses,

etc.) are difficult to

predict.

ÅResults in very conservation execution-time

estimates (and thus wasted processing

resources).

Core 1 Core M

L1 L1

L2

…

Approach 1: Accept this fact. Use resulting

slack for less-critical computing. ñMulticore

processors are big slack generators.ò

Approach 2: Manage shared caches more

predictably so that more accurate execution

time predictions can be made.

Jim Anderson 5 S5 Conf., 2012

What is ñLess Criticalò?

ÅWe assume tasks are assigned to criticality
levels, like in DO-178B:
» Level A: Catastrophic.
ïFailure may cause a crash.

» Level B: Hazardous.
ïFailure has a large negative impact on safety or
performanceé

» Level C: Major.
ïFailure is significant, buté

» Level D: Minor.
ïFailure is noticeable, buté

» Level E: No Effect.
ïFailure has no impact.

more

conservative

design

less

conservative

design

Jim Anderson 6 S5 Conf., 2012

Outline

ÅBackground.

» Real-time scheduling basics.

» Mixed-criticality scheduling.

ÅMC2: Proposed mixed-criticality

architecture.

Å$MANRT: Proposed framework for

managing shared caches.

ÅFuture research plans.

Jim Anderson 7 S5 Conf., 2012

Task Model Assumed in this Talk

ÅSet {T = (T.e,T.p)} of periodic tasks.

» T.e = Tôs worst-case per-job execution cost.

» T.p = Tôs period & relative deadline.

» T.u = T.e/T. p = Tôs utilization.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

job deadline

job release

Jim Anderson 8 S5 Conf., 2012

Task Model Assumed in this Talk

ÅSet {T = (T.e,T.p)} of periodic tasks.

» T.e = Tôs worst-case per-job execution cost.

» T.p = Tôs period & relative deadline.

» T.u = T.e/T. p = Tôs utilization.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

job deadline

job release

Jim Anderson 9 S5 Conf., 2012

Task Model Assumed in this Talk

ÅSet {T = (T.e,T.p)} of periodic tasks.

» T.e = Tôs worst-case per-job execution cost.

» T.p = Tôs period & relative deadline.

» T.u = T.e/T. p = Tôs utilization.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here

job deadline

job release

Jim Anderson 10 S5 Conf., 2012

Task Model Assumed in this Talk

ÅSet {T = (T.e,T.p)} of periodic tasks.

» T.e = Tôs worst-case per-job execution cost.

» T.p = Tôs period & relative deadline.

» T.u = T.e/T. p = Tôs utilization.

0 10 20 30

T = (2,5)

5 15 25

U = (9,15)

2 5

One Core Here
2/5

job deadline

job release

Jim Anderson 11 S5 Conf., 2012

Multiprocessor Real-Time Scheduling

Two Approaches:

Steps:
1. Assign tasks to processors (bin

packing).

2. Schedule tasks on each

processor using uniprocessor

algorithms.

Partitioning Global Scheduling

Important Differences:
Å One task queue.

Å Tasks may migrate among

the processors.

Jim Anderson 12 S5 Conf., 2012

Hard vs. Soft Real-Time

ÅHRT: No deadline is missed.

ÅSRT: Deadline tardiness is bounded.

» A wide variety of global scheduling

algorithms are capable of ensuring

bounded tardiness with no utilization loss.

Jim Anderson 13 S5 Conf., 2012

Scheduling vs. Schedulability
Whatôs ñUtilization Lossò?

ÅW.r.t. scheduling, we actually care about two

kinds of algorithms:

» Scheduling algorithm (of course).

ïExample: Earliest-deadline-first (EDF): Jobs with earlier

deadlines have higher priority.

» Schedulability test.

Test for

EDF
t

yes

no

no timing requirement

will be violated if t is

scheduled with EDF

a timing requirement

will (or may) be

violated é

Utilization loss occurs when test requires

utilizations to be restricted to get a ñyesò answer.

Jim Anderson 14 S5 Conf., 2012

Ensuring Bounded Tardiness

ÅUnder partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
» Due to connections to bin-packing.

ÅException: Global ñPfairò algorithms do not
require caps.
» Such algorithms schedule jobs one quantum at a time.
ïMay therefore preempt and migrate jobs frequently.

ïPerhaps less of a concern on a multicore platform.

ÅUnder most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
» Sufficient for soft real-time systems.

Example Global-EDF scheduleé

0 10 20 30

T = (2,3)

5 15 25

U = (2,3)

V = (2,3)

On Processor 1 On Processor 2

Jim Anderson 15 S5 Conf., 2012

Ensuring Bounded Tardiness

ÅUnder partitioning & most global algorithms,
overall utilization must be capped to avoid
deadline misses.
» Due to connections to bin-packing.

ÅException: Global ñPfairò algorithms do not
require caps.
» Such algorithms schedule jobs one quantum at a time.
ïMay therefore preempt and migrate jobs frequently.

ïPerhaps less of a concern on a multicore platform.

ÅUnder most global algorithms, if utilization is not
capped, deadline tardiness is bounded.
» Sufficient for soft real-time systems.

Example Global-EDF scheduleé

0 10 20 30

T = (2,3)

5 15 25

U = (2,3)

V = (2,3)

Tardiness is at most one quatum.

Jim Anderson 16 S5 Conf., 2012

Mixed-Criticality Scheduling
Proposed by Vestal [2007]

ÅEach task has an execution cost

specified at each criticality level (A-E).

» Costs at higher levels are (typically) larger.

ÅExample:

T.eA = 20, T.eB = 12, T.eC = 5, é

ÅRationale: Will use more pessimistic

analysis at high levels, more optimistic

at low levels.

Jim Anderson 17 S5 Conf., 2012

Mixed-Criticality Scheduling
Proposed by Vestal [2007]

ÅEach task has an execution cost

specified at each criticality level (A-E).

» Costs at higher levels are (typically) larger.

ÅThe task system is correct at level X iff

all level-X tasks meet their timing

requirements assuming all tasks have

level-X execution costs.

Some ñweirdnessò here: Not just one system

anymore, but five: the level-A system,

level-B,é

Jim Anderson 18 S5 Conf., 2012

Outline

ÅBackground.

» Real-time scheduling basics.

» Mixed-criticality scheduling.

ÅMC2: Proposed mixed-criticality

architecture.

Å$MANRT: Proposed framework for

managing shared caches.

ÅFuture research plans.

Jim Anderson 19 S5 Conf., 2012

MC2: Mixed-Criticality on Multicore
Our Proposed Mixed-Criticality Architecture (Joint with NGC)

ÅWe assume five criticality levels, A-E, like in

DO-178B.

ÅWe statically prioritize higher levels over lower

ones.

ÅWe assume:

» Levels A & B require HRT guarantees.

» Levels C & D require SRT guarantees.

» Level E is non-RT.

ÅRight now, weôre assuming a static system.

ÅWeôre currently working on enabling dynamic

changes at levels C-E.

Jim Anderson 20 S5 Conf., 2012

Scheduling in MC2

ÅLevel A (HRT): Partitioned, cyclic

executive (table-driven).
ïCEs are the de facto standard for highly critical

workloads.

ÅLevel B (HRT): Partitioned EDF (or RM).
ïPEDF (PRM) is a good HRT scheduler.

ÅLevels C & D (SRT): Global EDF.
ïGEDF is a good SRT scheduler.

ÅLevel E (Best Effort): BE Scheduler.

Jim Anderson 21 S5 Conf., 2012

MC2

CE CE CE CE

EDF EDF EDF EDF

G-EDF

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Level E

Core 1 Core 2 Core 3 Core 4

higher

(static)

priority

lower

(static)

priority

Jim Anderson 22 S5 Conf., 2012

Reclaiming Spare Capacity

ÅMC2 does this in two ways:

» At design time: This occurs when we
validate level-X RT guarantees.
ïThis requires assuming worst-case level-X

execution costs.

» At run time: MC2 uses a technique called
ñslack shiftingò to re-allocate available
slack.
ïThis exploits the fact that actual costs (at

whatever level) may be less than worst-case
costs.

Jim Anderson 23 S5 Conf., 2012

MC2 Papers
(All papers available at http://www.cs.unc.edu/~anderson/papers.html)

Å M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J.

Scoredos, ñMixed Criticality Real-Time Scheduling for Multicore

Systems,ò Proc. of the 7th IEEE International Conf. on

Embedded Software and Systems, 2010.

» Focus is on schedulability: How to check timing constraints at each

level and ñshiftò slack?

Å J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson,

ñRTOS Support for Multicore Mixed-Criticality Systems,ò Proc. of

the 18th IEEE Real-Time and Embedded Technology and

Applications Symp., 2012.

» Focus is on RTOS design: How to reduce the impact of RTOS-

related overheads on high-criticality tasks due to low-criticality

tasks?

Jim Anderson 24 S5 Conf., 2012

Outline

ÅBackground.

» Real-time scheduling basics.

» Mixed-criticality scheduling.

ÅMC2: Proposed mixed-criticality

architecture.

Å$MANRT: Proposed framework for

managing shared caches.

ÅFuture research plans.

Jim Anderson 25 S5 Conf., 2012

$MANRT: Basic Idea

ÅBuilds upon an idea called page coloring.

»Pages of physical memory are ñcoloredò based

on where their contents map in the cache.

» Accesses to differently colored pages cannot

cause cache conflicts.

ÅNew twist: Require tasks to ñlockò their

needed colors using a real-time locking

protocol.

» Exploits recent work at UNC on optimal real-time

multiprocessor locking protocols.

Jim Anderson 26 S5 Conf., 2012

Page Coloring Review

Å512 KB cache size.

Å64 byte cache line size.

ÅResults in 8192 cache lines.

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Assume, for the purpose of

illustration, that we have a small,

direct-mapped cacheé

Jim Anderson 27 S5 Conf., 2012

Page Coloring Review

Å8192 cache lines of 64 bytes each.

Å4 KB physical page.

ÅThere are 64 cache lines per page.

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

4 KB pages
Groups of 64

cache lines

per page.

Jim Anderson 28 S5 Conf., 2012

Page Coloring Review

ÅPage 0 maps to cache lines {0, é, 63}.

ÅPage 1 maps to cache lines {64, é, 127}.

ÅThe mapping wraps after 128 pages.

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

The mapping

wraps after

128 pages.

This mapping is

based upon bits

of the physical

memory address.

Jim Anderson 29 S5 Conf., 2012

ÅThe mapping wraps after 128 pages.

ÅThe 128 disjoint sets of pages are assigned

128 colors.

ÅAccesses to differently-colored pages canôt

cause cache conflicts.

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Page Coloring Review

Jim Anderson 30 S5 Conf., 2012

ÅIn practice, set associative (not direct

mapped) caches are used.

ÅIn a 2-way set associative cache, there are 64

colors instead of 128 colors.

ÅTwo entire pages of the same color may be

loaded without cache conflicts.

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Page Coloring Review

Jim Anderson 31 S5 Conf., 2012

ÅIn an n-way set associative cache colored this

way, n pages of the same color can be loaded

without conflict.

0 1 2 ... 128 129 130 256 257 258... ...Physical Pages

(4 KB)

0 - 63 64 - 127 128 - 191 ...Physical

Cache Lines

Page Coloring Review

Jim Anderson 32 S5 Conf., 2012

Colors as Shared Resources

ÅDedicating a page color to each real-time

task has been used to implement cache

partitioning.

» However, this limits the number of real-time

tasks that can run concurrently.

» Since each task is assigned only a subset

of the cache, thrashing can result.

ÅOur idea: Use multiprocessor real-time

locking protocols to enable tasks to

ñlockò their needed colors.

Jim Anderson 33 S5 Conf., 2012

Cache Coloring Synchronization Problem

ÅEach color is a shared resource with n

replicas (for an n-way set associative

cache).

ÅBefore accessing a physical page, a

task must ñacquireò or ñlockò a replica of

the corresponding color.

Jim Anderson 34 S5 Conf., 2012

Solving this Synchronization Problem

ÅEssentially need to

support ñnestedò

accesses of replicated

resources on a

multiprocessor.

ÅProtocols in these papers do this with

asymptotically optimal worst-case blocking:
» B. Ward and J. Anderson, ñSupporting Nested Locking in

Multiprocessor Real-Time Systems,ò Proc. of the 24th Euromicro

Conf. on Real-Time Systems, 2012.

» B. Ward and J. Anderson, ñNested Multiprocessor Real-Time

Locking with Improved Blocking.ò

Example Job:

 lock a replica of red;

 access a red page;

 lock a replica of the color blue;

 access a blue page;

 unlock the blue replica;

 unlock the red replica

Jim Anderson 35 S5 Conf., 2012

ÅWe call the resulting framework $MANRT:

» Cache ($) MANagement for Real-Time systems.
ïDescribed in: C. Kenna, J. Herman, B. Ward, and J. Anderson, ñMaking

Shared Caches More Predictable on Multicore Platforms.ò

ÅJust finished a first prototype assuming:

» where coloring is w.r.t. an 8MB 16-way L3 cache (the

last level cache).

$MANRT

RM RM RM RM

Best Effort

HRT

BE

Core 1 Core 2 Core 3 Core 4

Jim Anderson 36 S5 Conf., 2012

Impact on Worst-Case Execution Times

(WCETs)

ÅAssessed by recording observed WCETs

for benchmark task systems under:

1. $MANRT;

2. page coloring but no color locking;

3. no cache management.

ÅThe following graphs show scaling factors

x/y where x is WCET under (2) or (3) and y

is WCET under (1).

Jim Anderson 37 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Jim Anderson 38 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

The amount of the

cache a task may

access.

Jim Anderson 39 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

The amount of the

cache a task may

access.

The amount of the

cache a job of a

task may access.

Jim Anderson 40 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Jim Anderson 41 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Cache Footprint (KB)

S
c
a

lin
g

 F
a

c
to

r

Jim Anderson 42 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Cache Footprint (KB)

S
c
a

lin
g

 F
a

c
to

r

No Cache Mangement.

Jim Anderson 43 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Cache Footprint (KB)

S
c
a

lin
g

 F
a

c
to

r

No Cache Mangement.

Coloring Only.

Jim Anderson 44 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Cache Footprint (KB)

S
c
a

lin
g

 F
a

c
to

r

With no cache

mangement, WCETs

can be 8X higher than

$MANRT.

Jim Anderson 45 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Cache Footprint (KB)

S
c
a

lin
g

 F
a

c
to

r

With coloring only,

WCETs can be

6.5X higher.

Jim Anderson 46 S5 Conf., 2012

Example WCET Graph
WCET vs. Cache Footprint (WSS Fixed at 128KB)

Jim Anderson 47 S5 Conf., 2012

Example WCET Graph
WCET vs. WSS (Cache Footprint Fixed at 5MB)

Jim Anderson 48 S5 Conf., 2012

Example WCET Graph
WCET vs. WSS (Cache Footprint Fixed at 5MB)

WSS (KB)

S
c
a

lin
g

 F
a

c
to

r

Jim Anderson 49 S5 Conf., 2012

Example WCET Graph
WCET vs. WSS (Cache Footprint Fixed at 5MB)

WSS (KB)

S
c
a

lin
g

 F
a

c
to

r

No Cache Mangement.

Coloring Only.

Jim Anderson 50 S5 Conf., 2012

Example WCET Graph
WCET vs. WSS (Cache Footprint Fixed at 5MB)

WSS (KB)

S
c
a

lin
g

 F
a

c
to

r

Scaling factors decrease

with increasing WSS from

the 8X and 6.5X factors

seen earlier.

Jim Anderson 51 S5 Conf., 2012

Example WCET Graph
WCET vs. WSS (Cache Footprint Fixed at 5MB)

Jim Anderson 52 S5 Conf., 2012

Impact on Schedulability

ÅWe experimentally measured two

factors:

» Average deadline miss ratio

= percentage of jobs that miss deadlines;

» Average relative tardiness

= tardiness/period.

Jim Anderson 53 S5 Conf., 2012

Example Schedulability Graph
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB)

Jim Anderson 54 S5 Conf., 2012

Example Schedulability Graph
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
M

is
s
 R

a
ti
o

Jim Anderson 55 S5 Conf., 2012

Example Schedulability Graph
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
M

is
s
 R

a
ti
o

No Cache Mangement.

Coloring Only.

$MANRT.

Jim Anderson 56 S5 Conf., 2012

Example Schedulability Graph
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
M

is
s
 R

a
ti
o

Significant deadline

miss ratios.

Jim Anderson 57 S5 Conf., 2012

Example Schedulability Graph
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
M

is
s
 R

a
ti
o

Significant deadline

miss ratios.

Almost no misses.

Jim Anderson 58 S5 Conf., 2012

Example Schedulability Graph
Avg. Miss Ratio vs. WSS (Cache Footprint Fixed at 3.5MB)

Jim Anderson 59 S5 Conf., 2012

Example Schedulability Graph
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB)

Jim Anderson 60 S5 Conf., 2012

Example Schedulability Graph
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
R

e
la

ti
v
e

 T
a

rd
in

e
s
s

Jim Anderson 61 S5 Conf., 2012

Example Schedulability Graph
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
R

e
la

ti
v
e

 T
a

rd
in

e
s
s

No Cache Mangement.

Coloring Only.

$MANRT.

Jim Anderson 62 S5 Conf., 2012

Example Schedulability Graph
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
R

e
la

ti
v
e

 T
a

rd
in

e
s
s

Significant tardiness.

Jim Anderson 63 S5 Conf., 2012

Example Schedulability Graph
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB)

WSS (KB)

A
v
g

.
R

e
la

ti
v
e

 T
a

rd
in

e
s
s

Significant tardiness.

Almost no tardiness.

Jim Anderson 64 S5 Conf., 2012

Example Schedulability Graph
Avg. Rel. Tardiness vs. WSS (Cache Footprint Fixed at 3.5MB)

Jim Anderson 65 S5 Conf., 2012

Additional Schedulability Study

ÅFor certification, analytically assessed

schedulability is probably more important.

ÅTo evaluate this, we:

» randomly generated a number of HRT task

systems with varying total utilization for a 4-core

machine;

» assessed schedulability analytically assuming

either $MANRT or no $MANRT but a WCET

scaling factor.

ïEarlier experiments suggest such factors could be 8

or higher in practice.

Jim Anderson 66 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Jim Anderson 67 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Plots indicate the fraction

of generated task systems

deemed (by analysis) to be

ñschedulable.ò

Jim Anderson 68 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Jim Anderson 69 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

Jim Anderson 70 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

Scaling factor

of 1.0.

Jim Anderson 71 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

Scaling factor

of 1.5.

Jim Anderson 72 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

Scaling factor

of 2.0.

Jim Anderson 73 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

$MANRT (same

as 2.0 in this case).

Jim Anderson 74 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

Scaling factors of 4.0 to 8.0

(in line with our earlier

measurements).

Jim Anderson 75 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Total HRT Utilization

S
c
h

e
d

u
la

b
ili

ty

With a total HRT utilization of ~1.25,

$MANRT successfully scheduled

almost all systems, but only a tiny

fraction could be scheduled assuming

a (small) scaling factor of 3.0.

Jim Anderson 76 S5 Conf., 2012

Example Schedulability Graph
Cache Footprint Fixed at 2.56 MB

Jim Anderson 77 S5 Conf., 2012

Outline

ÅBackground.

» Real-time scheduling basics.

» Mixed-criticality scheduling.

ÅMC2: Proposed mixed-criticality

architecture.

Å$MANRT: Proposed framework for

managing shared caches.

ÅFuture research plans.

Jim Anderson 78 S5 Conf., 2012

ÅExtend $MANRT by considering:

» color-assignment schemes;

» its use in non-partitioned systems;

» its impact w.r.t. tool-produced WCETs;

» its impact when controlling all physical

pages (so far, weôve only looked at non-

shared task data pages);

» its use when systems may change

dynamically.

Future Research Goals

Jim Anderson 79 S5 Conf., 2012

ÅIntegrate $MANRT within MC2:

»may want to be more ñparsimoniousò w.r.t.

ñhigh-criticality colors,ò more optimistic w.r.t.

ñlow-criticality colorsò;

»an appropriate ñfactoringò between the RTOS

and middleware is needed.

ÅImprove our synchronization-related

analysis.

ÅExperiment with realistic workloads.

» Some of you could really help us here!

Future Research Goals (Contôd)

Jim Anderson 80 S5 Conf., 2012

URLs

ÅAll of our code can be found at:

» https://wiki.litmus-rt.org/litmus/Publications.

ÅAs mentioned earlier, all referenced

papers can be found at:

» http://www.cs.unc.edu/~anderson/papers.html.

https://wiki.litmus-rt.org/litmus/Publications
https://wiki.litmus-rt.org/litmus/Publications
https://wiki.litmus-rt.org/litmus/Publications
http://www.cs.unc.edu/~anderson/papers.html

Jim Anderson 81 S5 Conf., 2012

Thanks!

ÅQuestions?

