
specification-based program repair using SAT

sarfraz khurshid

joint work with: divya gopinath and muhammad zubair malik

university of texas at austin
khurshid@ece.utexas.edu

AFRL’s S5
6.16.11

overview

removing bugs in code is tedious and error-prone – even when

location of a fault is known

• particularly hard for programs that perform destructive

updates on complex, dynamically-allocated structures

this talk presents a novel specification-based approach for

automated debugging

• the alloy tool-set provides an enabling technology

• pre/post-conditions in alloy describe expected behavior

• SAT provides an analysis engine

our insight is to replace a faulty, deterministic statement with a

non-deterministic one that represents a class of similar operations

• prune non-determinism using alloy/SAT

experiments show our approach holds promise
2

3

enabling technology: alloy [jackson’00]

relational

formula

relational

instance

scope
translate

formula
mapping

translate

instance

boolean

formula

SAT

solver

boolean

instance

Alloy Analyzer

outline

overview

example

approach

experiments

conclusion

4

example: singly-linked, sorted list

5

class SLList {

Node header;

static class Node {

Node next;

int elem;

}

21

header
next

// class invariant

// acyclic

all n: header.*next | n !in n.^next

// sorted

all n: header.*next | some n.next => n.elem < n.next.elem

example: (faulty) delete method

6

// post-condition

header.*next.elem – v = header’.*next’.elem’

void delete(int v) {

Node prev = null;

Node l = header;

while (l != null) {

if (l.elem == v) {

if (prev != null) {

prev.next = l; // Error

} else

header = header.next;

return;

}

else {

prev = l;

l = l.next;

}

}

}

21

header
next

21

header
next

delete(2);

1

header

delete(2);

prev.next = l.next; // OK

outline

overview

example

approach

experiments

conclusion

7

our framework: overview

8

program repair

fault

localization

testing/checkin

g

counterexample

list of suspect

statements

repaired

program

specification

(alloy)
program scope/bound

Parameterization of

suspicious statements

SAT solving to get

satisfying instances

Abstraction of state to

program expressions

Checking the repaired

program

our framework: inputs

counterexample

• generated using SAT-based bounded exhaustive checking

• relational encoding of the formula: pre && code && !post

SLList = { L0 }, Node = { N0, N1 }, Integer = { -4, ..., 3 },

this = { L0 },

header = { <L0, N0> }, next = { <N0, N1> },

elem = { <N0, 1>, <N1, 2> },

header’ = header, next’ = next, elem’ = elem

list of suspect faulty statements

• identified using a fault localization tool or manually

• statement 6: “prev.next = l;”
9

next
N1: 2N0: 1

header next
header

N1: 2N0: 1

input incorrect output

our framework:

parameterization of suspicious statements
replace expressions with fresh variables that take non-deterministic

values from appropriate domains

• “e1.f = e2;” replaced with “v1 in D; v2 in D; v1.f = v2;”

• “v = e;” replaced with “v1 in D; v = v1;”

• “if (x op y) ...” replaced with “v1 in D; v2 in D; if (v1 op v2) ...”

• similarly for conditions in other statements

in our example, “prev.next = l;” replaced with

“v1 in { null, N0, N1 }; v2 in { null, N0, N1 }; v1.next = v2;”

we ignore errors of omission and errors in operators or constants

10

our framework:

SAT solving to get satisfying instances
use the input from the counterexample and the program with

parameterized statements to generate a correct execution

• solve the formula: inputfault-revealing && codeparameterized && post

in our example, we get:

and the valuation for correct execution has v1 = { N0 }, v2 = { null }

for assignment statement “v1.next = v2;”

11

next
N1: 2N0: 1

header
fault revealing input

N0: 1

header
correct output

our framework:

abstraction of state to program expressions
abstract the values of fresh variables to program expressions

• “v” or “v.f1. fn”, where “v” is a program variable and

f1, ... , fn are fields

in our example, at statement 6:

N0 abstracts to one of { prev, this.header }

null abstracts to one of { l.next, prev.next.next,

this.header.next.next }

12

our framework:

checking the repaired program
systematically replace fresh variables with appropriate expressions

and perform bounded exhaustive checking (not just for one input)

in our example, “prev.next = l;” can be transformed to

“header.next = l.next;”

• but bounded verification finds counterexample with 3 nodes

>1 transformations may generate correct repair

• e.g., “prev.next = l.next;” and “prev.next = prev.next.next;”

are both correct

13

outline

overview

example

approach

experiments

conclusion

14

setup

our prototype uses the forge framework [Dennis+ISSTA’06] of the

alloy tool-set for program repair as well as bounded checking

• code and spec encoded in forge intermediate language

• miniSAT

• works with program’s bounded computation graph

subject programs

• “insert” method of binary search tree

• “addChild” method of ANother Tool for Language Recognition

manually seeded faults in these methods

manually set bounds on input size and loop unrollings

manually provided list of suspect statements – different scenarios

metrics

• efficiency – total repair time, # of SAT calls

• accuracy – fix quality (semantic equivalence to correct code)15

scenarios

fault injection

• #faults <= 4

• commission

• field assignment statement

• local variable update

• “if-else” condition/body

• “while” condition/body

• omission

fault localization

• initial suspect list equals the list of faulty statements (Scr#1)

• suspect list additionally contains non-faulty statements (Scr#2)

• initial suspect list does not contain all faulty statements

and may contain some non-faulty statements (Scr#3) 16

scenarios: example [Error#10 in BST.insert]

fault injection

fault localization

• initial counterexample is empty tree which leads to list of

one suspicious statement { “if (x == null)” }

• next counterexample leads to { “y.right = y;”, “y.parent = x;” }

• next counterexample leads to { “y.left = y;” }

17

...

if (y == null)

t.root = x;

else {

if (k < y.key)

y.left = x;

else

y.right = x;

}

x.parent = y;

...

...

if (x == null) //FIX: if (y == null)

t.root = x;

else {

if (k < y.key)

y.left = y; //FIX: y.left = x;

else

y.right = y; //FIX: y.right = x;

}

y.parent = x; //FIX: x.parent = y;

...

results

18

ANTLR

BST

outline

overview

example

approach

experiments

conclusion

19

related work

program repair as a game

[jobstmann+CAV’05]

sketching for program synthesis using SAT

[solar-lezamaAPLAS’09]

machine learning-based tool for fixing bugs

[jeffrey+ICPC’09]

genetic programming for finding patches

[weimer+ICSE’09]

program repair using mutation

[debroy+ICST’10]

fixing of programs with contracts

[wei+ISSTA’10]

20

our previous work on repair

program repair using data structure repair [UT-MS’06, ASE’09, ICST’11]

• generate java statements that abstract concrete repair actions

• <N0, previous, N1> “newEntry.next.previous = newEntry;”

data structure repair using systematic constraint solving

• assertion-based repair [SPIN’05, ASE’07, OOPSLA’07, ECOOP’07,

ICSEd’08, ISSTA’08, UT-PhD’09]

• assertion describes expected properties at a control point,

e.g., class invariant, such as “assert repOk();”

• systematic search of a bounded neighborhood of the

erroneous state generates a repaired state

• contract-based repair [ABZ’10, ECOOP’10, UT-MS’10]

• alloy post-conditions relate pre-state and post-state

• repair algorithms iteratively modify field values
21

our ongoing work

further develop core algorithms for spec-based program repair

• handle more general errors of commission, e.g., incorrect

operators or method invocations

• reduce burden of writing specs

• our insight: enable writing specs using mixed constraints

• handle errors of omission

• our insight: synthesize code from violated parts of spec

use program repair to optimize on-the-fly data structure repair

• our insight: abstract concrete repair actions into “program

statements” that are “executed” to repair future errors

22

conclusions

this talk presents a novel specification-based approach to

program repair using alloy/SAT [Gopinath+TACAS’11]

• transform faulty statement into a non-deterministic statement

and use SAT to prune non-determinism

our project lays the foundation for using rich behavioral specs as

a basis of program repair

it forms a part of our wider effort on constraint-based development

and analyses

• specs are one form of constraints – at implementation level

• constraints may be at a higher level e.g., to describe

requirements, architecture, design, or even tests/analyses

it provides a basis for new reliability methodologies that apply

traditionally different approaches in synergy

? & //

khurshid@ece.utexas.edu
23

