specification-based program repair using SAT

sarfraz khurshid
joint work with: divya gopinath and muhammad zubair malik

university of texas at austin
kKhurshid@ece.utexas.edu

AFRL's S5
6.16.11

overview

removing bugs in code is tedious and error-prone — even when
location of a fault is known

 particularly hard for programs that perform destructive
updates on complex, dynamically-allocated structures

this talk presents a novel specification-based approach for
automated debugging

 the alloy tool-set provides an enabling technology
« pre/post-conditions in alloy describe expected behavior
« SAT provides an analysis engine

our insight is to replace a faulty, deterministic statement with a
non-deterministic one that represents a class of similar operations

e prune non-determinism using alloy/SAT
==experiments show our approach holds promise

enabling technology: alloy [jackson’00]

Alloy Analyzer

outline

overview
example
approach
experiments
conclusion

class SLList{
Node header;

static class Node {
Node next;
int elem;

/I class invariant

/[acyclic

all n: header.*next | n !lin n.*next

Il sorted

all n: header.*next | some n.next => n.elem < n.next.elem

—next

example: (faulty) delete method

I/ post-condition
header.*next.elem — v = header’.*next’.elem’

void delete(int v) {
Node prev = null;
Node | = header;
while (I''= null) {
if (l.,elem ==v) {
if (prev = null) {

prev.next ==k=ht=ras
} else
header = header.next;
return;
}
else {
prev = I;
| = l.next;

N\
header -

heade?*\ next
EipE]

prev.next = l.next; // OK

delete(2);

N\
header~\‘

outline

overview
example
approach
experiments
conclusion

our framework: overview

testing/checkin

9

program repair

Parameterization of
suspicious statements
SAT solving to get
satisfying instances
fault Abstraction of state to
localization program expressions
Checking the repaired
program

our framework: Inputs

counterexample
* generated using SAT-based bounded exhaustive checking
 relational encoding of the formula: pre && code && !post

input incorrect output
header_ next header next
TN 1[Ny 2 Ng: 1 [— [Ny 2
SLList={ L, }, Node = { Ny, N; }, Integer ={ -4, ..., 3},
this ={ L, },

header = { <Ly, Ng>}, next = { <N,, N> },
elem = { <N,, 1>, <N,, 2>},
header’ = header, next’ = next, elem’ = elem

list of suspect faulty statements
« |dentified using a fault localization tool or manually
« statement 6: “prev.next = I;”

our framework:
parameterization of suspicious statements

replace expressions with fresh variables that take non-deterministic
values from appropriate domains
* “e,.f=e,;" replaced with “v, in D; v, in D; v,.f = v,;”
« “v =e;" replaced with “v, In D; v = v;”
* “if (xopy)..." replaced with “v, In D; v, In D; Iif (v; 0p V) ...”
 similarly for conditions in other statements

In our example, “prev.next = |;” replaced with
“vo Iin { null, Ny, Ny }; v, in { null; Ny, N; }; vi.next = v,;”

we ignore errors of omission and errors in operators or constants

10

our framework:
SAT solving to get satisfying instances

use the input from the counterexample and the program with
parameterized statements to generate a correct execution

* solve the formula: INput, . reveaing && COUE 4 rameterized && POSt

In our example, we get:

fault revealing input correct output
header\ next headen
Ng: 1| N;2 “I'Ng: 1

and the valuation for correct execution has v; = { Ny}, v, = { null }
for assignment statement “v,.next = v,;”

11

our framework:
abstraction of state to program expressions

abstract the values of fresh variables to program expressions

kg 0 k, N

« “v'or “v.f..... {7, where "V is a program variable and
f,, ..., f are fields

In our example, at statement 6:
N, abstracts to one of { prev, this.header }
null abstracts to one of { |.next, prev.next.next,
this.header.next.next }

12

our framework:
checking the repaired program

systematically replace fresh variables with appropriate expressions
and perform bounded exhaustive checking (not just for one input)

In our example, “prev.next = I;” can be transformed to
“header.next = |.next;”

« but bounded verification finds counterexample with 3 nodes

>1 transformations may generate correct repair

* e.g., prev.next = l.next;” and “prev.next = prev.next.next;”
are both correct

13

outline

overview
example
approach
experiments
conclusion

14

setup

our prototype uses the forge framework [Dennis+ISSTA’06] of the
alloy tool-set for program repair as well as bounded checking

« code and spec encoded in forge intermediate language
 MINISAT
« works with program’s bounded computation graph
subject programs
* “insert” method of binary search tree
« “addChild” method of ANother Tool for Language Recognition
manually seeded faults in these methods
manually set bounds on input size and loop unrollings
manually provided list of suspect statements — different scenarios
metrics
« efficiency — total repair time, # of SAT calls
« accuracy — fix quality (semantic equivalence to correct code)

scenarios

fault injection

« #faults <=1

¢ commission
* fleld assignment statement
* local variable update
* “if-else” condition/body
 “while” condition/body

e Omission

fault localization
* Initial suspect list equals the list of faulty statements (Scr#1)
« suspect list additionally contains non-faulty statements (Scr#2)

* Initial suspect list does not contain all faulty statements
and may contain some non-faulty statements (Scr#3) 16

scenarios: example [Error#10 in BST.insert]

fault injection

if (X == null) //FIX:if (Y == null)
t.root = x;
else {
if (k < y.key)
yleft =Y; //[FIX: yleft = X;
else
y.right = Y; //FIX: y.right = X;

}
Y.parent = X; //[FIX: X.parent = Y;

fault localization

* Initial counterexample is empty tree which leads to list of
one suspicious statement { “if (x == null)” }

* next counterexample leads to { “y.right = y;”, “y.parent = x;”
* next counterexample leads to { “y.left = y;" }

17

results

Name |Scr#| Error# | FL Scheme Output Type of Stmts Repair
Faulty [# Correct Time(secs)
Assign Stmt

Branch stmt

Branch stmt

Assign stmt

Assign stmt

Branch stmt

Branch stmt

Loop condition
Branch, Assign stmts
Assign stmts
Branch, Assign stmts
Branch, Assign stmts
Assign stmts
Branch, Assign stmts
Branch, Assign stmts
Branch, Assign stmts
Assign, Branch stmts
Omission error

|
2a

2b
3a

, Same
, Diff

, Same
, Diff

, Same
, Diff

, Same
, Same
, Same
, Same
, Same
, Same
, Same
, Same
, Same
, Same

. Same
NA

, Dift
. Same

fd

Fel el O O = O o = —| | b2 L L | | e
| QN Y

R RGOS OSSOSO NSNS OSN

]

4b

-
WO G0 B b = o tnf B B3l SN =

— T

0
0
0
0
0
0
0
0
0
0
2
1
1
0
0
1
|
Z

Assign Stmt
Branch, Assign stmts

& R
7
= >
A4 -
| 1D TPE-I&

18

outline

overview
example
approach
experiments
conclusion

19

related work

program repair as a game
[jobstmann+CAV’'05]

sketching for program synthesis using SAT
[solar-lezamaAPLAS'09]

machine learning-based tool for fixing bugs
[jeffrey+|ICPC’09]

genetic programming for finding patches
[weimer+|ICSE'09]

program repair using mutation
[debroy+ICST’10]

fixing of programs with contracts
[wei+ISSTA10]

20

our previous work on repair

program repair using data structure repair [UT-MS’06, ASE’09, ICST11]

e generate java statements that abstract concrete repair actions
« <N,, previous, N;> 7Ny “newEntry.next.previous = newEntry;”

data structure repair using systematic constraint solving

 assertion-based repair [SPIN’05, ASE’07, OOPSLA’07, ECOOP’07,
ICSE,’08, ISSTA’08, UT-PhD’09]

- assertion describes expected properties at a control point,
e.g., class invariant, such as “assert repOk();”

« systematic search of a bounded neighborhood of the
erroneous state generates a repaired state

 contract-based repair [ABZ’10, ECOOP’10, UT-MS’10]
« alloy post-conditions relate pre-state and post-state

* repair algorithms iteratively modify field values
21

our ongoing work

further develop core algorithms for spec-based program repair

* handle more general errors of commission, e.g., incorrect
operators or method invocations

* reduce burden of writing specs
 our insight: enable writing specs using mixed constraints
« handle errors of omission
 our insight: synthesize code from violated parts of spec
use program repair to optimize on-the-fly data structure repair

 our insight: abstract concrete repair actions into “program
statements” that are “executed” to repair future errors

22

? &

this talk presents a novel specification-based approach to
program repair using alloy/SAT [Gopinath+TACAS'11]

 transform faulty statement into a non-deterministic statement
and use SAT to prune non-determinism

our project lays the foundation for using rich behavioral specs as
a basis of program repair

It forms a part of our wider effort on constraint-based development
and analyses

« specs are one form of constraints — at implementation level

e constraints may be at a higher level e.g., to describe
requirements, architecture, design, or even tests/analyses

It provides a basis for new reliability methodologies that apply
traditionally different approaches in synergy

khurshid@ece.utexas.edu ’3

