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IjPA Adaptive Vehicle Make vision

Shorten development times for complex defense systems [META]
* Raise level of abstraction in design of electromechanical systems
* Enable correct-by-construction designs through model-based verification
* Compose designs from component model library that characterizes the “seams”

* Rapid requirements trade-offs; optimize for complexity & adaptability, not SWaP

Shift product value chain toward high-value design activities [iFAB]
= Bitstream-configurable foundry-like manufacturing capability for defense systems
* Rapid switch-over between designs with minimal learning curve

= “Mass customization” across product variants and families

Democratize design [FANG]

* Crowd-sourcing infrastructure to enable open-source development of
electromechanical systems [vehicleforge.mil]

= Series of prize-based Adaptive Make Challenges culminating a Ground Combat
Vehicle prototype for evaluation against Army GCV Program of Record [FANG]

* Motivate a new generation of designers and manufacturing innovators [MENTOR]
33
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What is META?

e Devise, implement, and demonstrate a radically different approach to the design,
integration/manufacturing, and verification of defense systems/vehicles

e Enhance designer’s ability to manage system complexity

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.
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Team

e Rockwell Collins / Advanced Technology Center
— Darren Cofer, Steven Miller, Andrew Gacek
— System modeling & analysis, tooling, integration

 UIUC
_ Lui Sha J§ILLINOTIS

o Rl UNIVEREITY OF ILLINQIS AT URBANS-CHAMPAIGN

— Design pattern development

e University of MN B
— Michael Whalen UNIVERSITY OF MINNESOTA
— Pattern verification, compositional analysis

° WWIG EWW Tecimosoor Grour
_ ChriS Walter The Dependability Solution Provider

— Pattern implementation & analysis tools

© Copyright 2011 Rockwell Collins, Inc. 4
All rights reserved.



Collins

Topics

e Review: What is a design pattern?
e Key insights
e Results

— Design flow and tools

— PALS: vertical contract

— Structural property checking

— Contract between patterns

e Next steps

© Copyright 2011 Rockwell Collins, Inc. 5
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Complexity-Reducing
Architectural Design Patterns

e Design pattern = model transformation
— pP:M—> M (partial function)
— Applied to system models
e Verification reuse is key
— Not software reuse in OO style
— Patterns (and components) provide guaranteed behavior
— Formal verification effort amortized over many system designs
e Reduce/manage system complexity
— Separation of concerns
— System logic vs. application logic
— Compositional reasoning exploits system hierarchy
e Encapsulate & standardize good solutions
— Raise level of abstraction
— Codify best practices

© Copyright 2011 Rockwell Collins, Inc. 6
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Vision
e System design & verification through pattern application
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Design patterns attack system complexity through
automated model transformations

o Active-Standby pattern allows
system developers to work at a
higher level of abstraction
<<<<<<< -
e o s e e “Use of formally verified Active/Standby

design cut development time by 1/3 and
saved hundreds of hours of on-aircraft
test time.” — RC Commercial Systems

PALS pattern achieves >3 orders

of magnitude reduction in state
((((((( : space and verification complexity
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Powerful system synthesis tools based on
pre-verified design patterns achieve dramatic
reduction in rework and testing effort

T

Verification effort amortized Compositional verification
over many designs as basis exploits natural system
for correct-by-construction hierarchy through formal
assume-guarantee reasoning

system design

€——— ASSUMPTIONS GUARANTEES =————>

Verification
| reuse
| PATTERN MODELING
! | mopeLs / ENVIRONMENT
: — : INSTANTIATE {\ .
ANNOTATE [ SYSTEM Lol SYSTEM 1
& VERIFY [—>| SQ;LEQ*;‘E&C —> ARC;' gﬁEEEKRNS MODEL —> GEII-}ILIJE-IFR(;TE —>|IMPLEMENTATION| |
FIOBELS LIBRARY | | | | CONSTRAINTS i} .
: 1 D :
| |COMPONENT| b L i
! | MODELS %C?ﬂﬁhgm P COMPOSITIONAL | | ! :
i REASONING &
E— Rework IRRNGSRUE Guaranteed
elimination design “Rework cost is up to 60% of
- — , total development cost for large,
SPECIFICATION . SYSTEM DEVELOPMENT P FOUNDRY : complex systems.” — AVSI SAVI
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Assumptions:
PALS Causality Constraint
PALS Period Constraint

Initial design patterns

Guarantees:
Period equals PALS Period
= PALS Synchronous comm

— Just enough synchronization

e Replication Assumptions:
) Not co-located
— Foundation for more complex Less than N faults
fault-tolerance patterns SHARERECES
] One operational
e Leader Selection
— Set of nodes agree on leader Assumptions:
One operational
Synchronous comm
e In the works... Guarantees:
_ Voter Leader exists
] Leader non-failed
— Simplex Non-failed nodes agree
— PALS Whiteboard Non-failed leader unchanged

© Copyright 2011 Rockwell Collins, Inc. 10
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Pattern design

e Build patterns from
fundamental operations
— Replicate component

— Remove component
— Rename component

— Insert component

— Insert data specification
— Replicate feature

— Rename feature

— Create feature

— Remove feature

— Create connection

— Remove connection

— Insert property set

— Assign property

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Build larger patterns from
smaller patterns

— Active-Standby =
Replication +
Leader Selection +
PALS

Pattern can include

structural constraints on
models for instantiation

— EXx: only apply PALS to leaf
nodes
Guaranteed behaviors of
patterns are verified
separately

— Added to patterns as new
AADL properties

11
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System Design Through Pattern Application

Active Standby Pattern

Initial /Replicate Leader Selection PALS Replicate SFir;al

-

Avionics
System

Flight
Control

System Hierarchy —>

Flight
Guidance

Pattern Application >

© Copyright 2011 Rockwell Collins, Inc. 12
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Design flow
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SYSTEM DEVELOPMENT

FOUNDRY
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Tool architecture

e Eclipse

Tool integration using plug-ins
Eclipse Modeling Framework
Builds on existing AADL tools

e Plug-ins

OSATE: AADL editing (SEI)

EDICT: Pattern instantiation (WWTG)
META: Import SysML from EA (RC)
META:

Ies-H

* EDICT Design - META demo-SysComp/team/core/ architecture/patterns,/transforms/META.sysptml - EDICT-Core Tool Suite =10] x|
File Edit Mavigate Search Project EDICT Run META ‘Window Help
Q= (57 - [ o s
4 B ECicT Desian 4 AADL [ Resource
— =g

EE SystemarchTranslationSpecs ‘ @ TOP.aaxl2 12 i *ni ) g

(-
%] System Architecture - Pattern Transform
. Pattern Instantiations: System Architecture:  META dema
=l C.‘I 5| 5| Type | Hame: All PIs Applied
) 1 v Replication FGS-rep
O- 2 v leader Select F&&-LS
I | 1]

=1

Transform Cantral

Hemaye,

Reset
Apply Al {

Transform | Instantiation | Save Copy |

[ g |

e 0@

Structural property checking by Lute (RC)

META: Assume-guarantee verification (UMN) — TBD

Avionics
System

\/

© Copyright 2011 Rockwell Collins, Inc.
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Patterns

System
verification

Structural
checks
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System architecture model

e Software + HW platform
— Process, thread, processors, bus
e PALS vertical contract

— PALS timing constraints on
platform

— Check AADL structural properties

e Guarantees

— Sync logic executes at
PALS Period

— Synchronous_Communication
=> “One_Step Delay”
e Assumptions (about platform)
— Causality constraint:
Min(Output time) = 2 — ymin
— PALS period constraint:
Max(Output time) < T - ymax - 2¢

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.
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PALS assumptions in AADL model
T] Clock_Jitter 1]+1
( + 8)///— B Period ( * 8)

Deadline

v

Compute_ Execution_Time

A 4

\\ » Output
Output_Time message
Latency
Input
Dispatch_Offset (if imposed) ?VZS.E?,?S
Dispatch_Jitter (if describing max scheduling delay)
Earliest period start
( ig) ( 181 Period on other node \ ( iS)
Thread execution | Deadline \

»

| Thread execution |

[

q T Earliest output message

Latest output
message

__— Latest period start Max(Latency) >

A 4

™~ Min(Output_Time)

>/ Min(Latency)

Latest period start
on other node

Max(Output_Time)

Causality Constraint PALS Period Constraint
Messages don't arrive too soon Messages don't arrive too late
© Copyright 2011 Rockwell Collins, Inc. 16
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Structural property checks

e Attached at pattern
instantiation

— Model-independent
— Assumptions
— Pre/post-conditions

e Lute theorems
— Based on REAL
— Eclipse plug-in
— Structural properties in
AADL model

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

PALS Threads := {s in Thread_Set | Property_Exists(s,
"PALS_Properties: :PALS_I1d")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS Properties::PALS 1d™);
PALS_Group(t) := {s in PALS Threads | PALS_1d(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock Jitter'™) for p in Processor_Set |
Cardinal ({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and
Member (Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s In PALS Threads do
check Property_Exists(s, '"Period"™) and
PALS Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS Threads do
PALS_Group := PALS Group(s);
Clock_Jitter := Max_Thread_Jditter(PALS_Group);
Min_Latency := Min({Lower(Property(c, '"Latency')) for
c in Connections_Among(PALS_Group)});

Output_Delay := {Property(t, "Output_Delay') for t in PALS_Group};

check (if 2 * Clock_Jitter > Min_Latency then
Min(Output_Delay) > 2 * Clock Jitter - Min_Latency
else
true);
end;

17
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Contracts between patterns

Avionics

System

e Avionics system requirement
leader transition

bounded

Under single-fault assumption, GC

output transient response is bounded
in time and magnitude

one node
operational

e Relies upon synchronous

— Guarantees provided by communication
patterns and components

— Structural properties of

GUARANTEES =———

model
— System-level fault
assumptions timing not
constraints co-located

€= ASSUMPTIONS

Principled mechanism

Platform

for “passing the buck”

© Copyright 2011 Rockwell Collins, Inc. 18
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Categories of properties

e Behavioral
— Pattern and component interactions
— Specified in PSL, verified by model checking
— Failed node will not be leader in next step
G(ldevice ok[j] -> X(leader[i] = })) ;
e Structural
— Properties of the transformed model
— Pattern assumptions, post-conditions
— Specified and checked using Lute
— PALS period constraint
Deadline < PALS Period - Max_Latency - 2*Clock Jitter
e Resource allocation
— RT schedulability, memory allocation, bandwidth allocation
— ASIIST tool (UIUC/RC)
— Threads can be scheduled to meet their deadlines

© Copyright 2011 Rockwell Collins, Inc. 19
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Next steps

e Compositional techniques for system verification
— Assume-Guarantee ledger

e Continue development of pattern instantiation tool
— Implement additional patterns (Voting, Simplex)

© Copyright 2011 Rockwell Collins, Inc. 20
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Complexity-Reducing Design Patterns for Cyber Physical Systems

Objective
* Achieve dramatic reduction in ‘ b b !
the time required to design and ' [ are P SYSTEM
verify complex, mixed-criticality | | PATTERN = NI
cyber-physical systems ! b
Key innovations - -
. . i |
 Complexity-reducing system | awomate | [oormea] G|, NoTanTiaTE SvsTEM A
design patterns with formally } 8 VERFY —>|comp sPEC [T AR L L RS MODEL cEnerate >|IMPLEMENTATION
guaranteed propertles LIBRARY | | | CONSTRAINTS
. . | N~
* Architectural modeling and | /I\ L 7
analysis to support virtual | >y
integration, composition, and " [comPoNENT b b
o . | COMPONENT| | | o
verification of system-level | | MODELS LBRARY | | | COMPOSITIONAL | |
properties L ANALYSIS |
* Automated formal verification 3 \T P
deeply embedded in the system | P )
design process itself o !
SPECIFICATION b SYSTEM DEVELOPMENT P FOUNDRY
REQUIREMENTS REWORK DELIVERY | m p aCt

« Dramatic schedule efficiencies

» Correct by construction eliminates
rework cycles

* Integrated verification eliminates
rework & retest - direct to foundry

Team

* Rockwell Collins ATC

* University of lllinois U-C

 University of Minnesota

IMPLEMENTATION

> + WW Technology Group
TRADITIONAL DEVELOPMENT PROCESS CORRECT-BY-CONSTRUCTION PROCESS Technolo gy Transition
DESIGN->BUILD->TEST->REDESIGN SUPPORTS ACCELERATED SCHEDULE .
» Focus on open standard modeling
languages
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