Complexity-Reducing Design Patterns
for Cyber-Physical Systems

DARPA TTO - META

14-16 June 2011
Darren Cofer

_____

o hns

Approved for public release: distribution unlimited

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.



Collins

META is part of the DARPA AVM program

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

IjPA Adaptive Vehicle Make vision

Shorten development times for complex defense systems [META]
* Raise level of abstraction in design of electromechanical systems
* Enable correct-by-construction designs through model-based verification
* Compose designs from component model library that characterizes the “seams”

* Rapid requirements trade-offs; optimize for complexity & adaptability, not SWaP

Shift product value chain toward high-value design activities [iFAB]
= Bitstream-configurable foundry-like manufacturing capability for defense systems
* Rapid switch-over between designs with minimal learning curve

= “Mass customization” across product variants and families

Democratize design [FANG]

* Crowd-sourcing infrastructure to enable open-source development of
electromechanical systems [vehicleforge.mil]

= Series of prize-based Adaptive Make Challenges culminating a Ground Combat
Vehicle prototype for evaluation against Army GCV Program of Record [FANG]

* Motivate a new generation of designers and manufacturing innovators [MENTOR]
33

© Copyright 2011 Rockwell Collins, Inc. 2
All rights reserved.



Collins

What is META?

e Devise, implement, and demonstrate a radically different approach to the design,
integration/manufacturing, and verification of defense systems/vehicles

e Enhance designer’s ability to manage system complexity

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

= “Foundry-style” model of DR.PA Historical schedule trends with complexity
manufacturing

= Five technical areas 240 - _
NextGen Historical Coat Growth e sdusied fer isflavon)
220 1 | | Elbtfom Aerospace Systems [1950—present) | B-12%iyr
. R . * Automoblies [1960—present) ABLNT
1. Metrics of compIeX|ty 2 500 bl e : Integrated Clrcults {1970-present] | ~0%AT
c design flow
£ 180 1 - i
2. Metrics of 2 180 :
adaptabilit K IR~ | _ix educton
p y E 140 1 -y I Development Effort
@ 120 1
c . I
3. Meta-language for £ 100 | i i
1 o I—)
system design g 804 T |
- 1960z
= B0 1060
- % + + | Automobile reerbbd ¢ )
4. Design flow & tools 8 40— e et Ger
* *
20 A g | Intei 5088 [rl|ie.|'236 Intei 385 + '«':;n
- - - 1980 uytamodig
5. Verification flow & 0 —— ' e Gen - -
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1E+10
tools
Complexity*
[Part Count+ Source Lines of Code (SLOC)]
© Copyright 2011 Rockwell Collins, Inc. 3

All rights reserved.



Collins

Team

e Rockwell Collins / Advanced Technology Center
— Darren Cofer, Steven Miller, Andrew Gacek
— System modeling & analysis, tooling, integration

 UIUC
_ Lui Sha J§ILLINOTIS

o Rl UNIVEREITY OF ILLINQIS AT URBANS-CHAMPAIGN

— Design pattern development

e University of MN B
— Michael Whalen UNIVERSITY OF MINNESOTA
— Pattern verification, compositional analysis

° WWIG EWW Tecimosoor Grour
_ ChriS Walter The Dependability Solution Provider

— Pattern implementation & analysis tools

© Copyright 2011 Rockwell Collins, Inc. 4
All rights reserved.



Collins

Topics

e Review: What is a design pattern?
e Key insights
e Results

— Design flow and tools

— PALS: vertical contract

— Structural property checking

— Contract between patterns

e Next steps

© Copyright 2011 Rockwell Collins, Inc. 5
All rights reserved.



Rockwel/
Collins

Complexity-Reducing
Architectural Design Patterns

e Design pattern = model transformation
— pP:M—> M (partial function)
— Applied to system models
e Verification reuse is key
— Not software reuse in OO style
— Patterns (and components) provide guaranteed behavior
— Formal verification effort amortized over many system designs
e Reduce/manage system complexity
— Separation of concerns
— System logic vs. application logic
— Compositional reasoning exploits system hierarchy
e Encapsulate & standardize good solutions
— Raise level of abstraction
— Codify best practices

© Copyright 2011 Rockwell Collins, Inc. 6
All rights reserved.



Collins

Vision
e System design & verification through pattern application

' LRU
| SENSOR 1 L N
| H COMPUTING : FAIL-SILENT
VOTE ! !! | RESOURCE A | NODE FROM
MULTIPLE ' | SENSOR?2 o > REPLICAS
DATA | i :
; ' | COMPUTING :
| SENSOR 3 i RESOURCE B !
| |
VERIFIED ! ! VERIFIED
AVAILABILITY ARCHITECTURE INTEGRITY
MODEL
COMPOSITIONAL PROOF OF CORRECTNESS
(ASSUME — GUARANTEE)
SAFETY, BEHAVIORAL,
PERFORMANCE PROPERTIES
© Copyright 2011 Rockwell Collins, Inc. 7

All rights reserved.



Collins

Design patterns attack system complexity through
automated model transformations

o Active-Standby pattern allows
system developers to work at a
higher level of abstraction
<<<<<<< -
e o s e e “Use of formally verified Active/Standby

design cut development time by 1/3 and
saved hundreds of hours of on-aircraft
test time.” — RC Commercial Systems

PALS pattern achieves >3 orders

of magnitude reduction in state
((((((( : space and verification complexity

1.E+07
e one 10
‘ 1.E+05
1.E+04
i i+ i i+1 1.E+03
1 I 1 I I
1 1 1 1
NODE 1 l—‘ I—‘ | NODE 1 l—‘ :I_h ! | : 1.E+02
P b o 1E+01
| K . |
NODE 2 NODE2 |+ o | ! 1.E+00
. i 1 I I I o~ ASync
! [ Do > ® = PALS
! 1 1 z - ko) ®
NODE 3 NODE 3 : S~ 3 S - 2 o
— 2 2
— — > CLOCK JITTER 28 &8 il <z =
o € 73S g 3 T I~
SYNCHRONOUS NETWORK ASYNCHRONOUS BOUNDED DELAY NETWORK WITH PALS % fé c .% @ g «§ 8
© Copyright 2011 Rockwell Collins, Inc. 8

All rights reserved.



Collins

Powerful system synthesis tools based on
pre-verified design patterns achieve dramatic
reduction in rework and testing effort

T

Verification effort amortized Compositional verification
over many designs as basis exploits natural system
for correct-by-construction hierarchy through formal
assume-guarantee reasoning

system design

€——— ASSUMPTIONS GUARANTEES =————>

Verification
| reuse
| PATTERN MODELING
! | mopeLs / ENVIRONMENT
: — : INSTANTIATE {\ .
ANNOTATE [ SYSTEM Lol SYSTEM 1
& VERIFY [—>| SQ;LEQ*;‘E&C —> ARC;' gﬁEEEKRNS MODEL —> GEII-}ILIJE-IFR(;TE —>|IMPLEMENTATION| |
FIOBELS LIBRARY | | | | CONSTRAINTS i} .
: 1 D :
| |COMPONENT| b L i
! | MODELS %C?ﬂﬁhgm P COMPOSITIONAL | | ! :
i REASONING &
E— Rework IRRNGSRUE Guaranteed
elimination design “Rework cost is up to 60% of
- — , total development cost for large,
SPECIFICATION . SYSTEM DEVELOPMENT P FOUNDRY : complex systems.” — AVSI SAVI
© Copyright 2011 Rockwell Collins, Inc. 9

All rights reserved.



Collins

Assumptions:
PALS Causality Constraint
PALS Period Constraint

Initial design patterns

Guarantees:
Period equals PALS Period
= PALS Synchronous comm

— Just enough synchronization

e Replication Assumptions:
) Not co-located
— Foundation for more complex Less than N faults
fault-tolerance patterns SHARERECES
] One operational
e Leader Selection
— Set of nodes agree on leader Assumptions:
One operational
Synchronous comm
e In the works... Guarantees:
_ Voter Leader exists
] Leader non-failed
— Simplex Non-failed nodes agree
— PALS Whiteboard Non-failed leader unchanged

© Copyright 2011 Rockwell Collins, Inc. 10
All rights reserved.



Rockwe

s Al

Pattern design

e Build patterns from
fundamental operations
— Replicate component

— Remove component
— Rename component

— Insert component

— Insert data specification
— Replicate feature

— Rename feature

— Create feature

— Remove feature

— Create connection

— Remove connection

— Insert property set

— Assign property

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Build larger patterns from
smaller patterns

— Active-Standby =
Replication +
Leader Selection +
PALS

Pattern can include

structural constraints on
models for instantiation

— EXx: only apply PALS to leaf
nodes
Guaranteed behaviors of
patterns are verified
separately

— Added to patterns as new
AADL properties

11



Collins

System Design Through Pattern Application

Active Standby Pattern

Initial /Replicate Leader Selection PALS Replicate SFir;al

-

Avionics
System

Flight
Control

System Hierarchy —>

Flight
Guidance

Pattern Application >

© Copyright 2011 Rockwell Collins, Inc. 12
All rights reserved.



Rockwe

Collins

Design flow

ARCH

PATTERN
MODELS

ANNOTATE
& VERIFY

Reusable
pattern

verification

Y
N

PATTERN &

MODELS

\—T—J

© Copyright 2011 Rockwell Collins, Inc.

COMPONENT]

EDICT/Lute

Correct

COMP SPEC
LIBRARY

N~

Y

MODELS
I

COMPONENT]
LIBRARY

OSATE /EA

Create/edit

SPECIFICATION

e i

__________________

All rights reserved.

SYSTEM DEVELOPMENT

FOUNDRY

pattern M%YDSI;EMG : system
application ENVIRONMENT | | design
INSTANTIATE i
ARCH PATTERNS SYSTEM b AUTO SYSTEM
& CHECK MODEL 7| GENERATE IMPLEMENTATION
CONSTRAINTS L
/4 Lo
[ 5 KIND/NuSMV
COMPOSITIONAL | | .
REASONING & Assumptions +
ANALYSIS Guarantees =
System props
g

13



Rockwe

Collins

Tool architecture

e Eclipse

Tool integration using plug-ins
Eclipse Modeling Framework
Builds on existing AADL tools

e Plug-ins

OSATE: AADL editing (SEI)

EDICT: Pattern instantiation (WWTG)
META: Import SysML from EA (RC)
META:

Ies-H

* EDICT Design - META demo-SysComp/team/core/ architecture/patterns,/transforms/META.sysptml - EDICT-Core Tool Suite =10] x|
File Edit Mavigate Search Project EDICT Run META ‘Window Help
Q= (57 - [ o s
4 B ECicT Desian 4 AADL [ Resource
— =g

EE SystemarchTranslationSpecs ‘ @ TOP.aaxl2 12 i *ni ) g

(-
%] System Architecture - Pattern Transform
. Pattern Instantiations: System Architecture:  META dema
=l C.‘I 5| 5| Type | Hame: All PIs Applied
) 1 v Replication FGS-rep
O- 2 v leader Select F&&-LS
I | 1]

=1

Transform Cantral

Hemaye,

Reset
Apply Al {

Transform | Instantiation | Save Copy |

[ g |

e 0@

Structural property checking by Lute (RC)

META: Assume-guarantee verification (UMN) — TBD

Avionics
System

\/

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Patterns

System
verification

Structural
checks

14




Collins

System architecture model

e Software + HW platform
— Process, thread, processors, bus
e PALS vertical contract

— PALS timing constraints on
platform

— Check AADL structural properties

e Guarantees

— Sync logic executes at
PALS Period

— Synchronous_Communication
=> “One_Step Delay”
e Assumptions (about platform)
— Causality constraint:
Min(Output time) = 2 — ymin
— PALS period constraint:
Max(Output time) < T - ymax - 2¢

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

csA

{1}
Fllght_Cn;‘rul_Syslem
AP203A

Software

IMA_Platform

BBBBBB

Platform

15



Collins

PALS assumptions in AADL model
T] Clock_Jitter 1]+1
( + 8)///— B Period ( * 8)

Deadline

v

Compute_ Execution_Time

A 4

\\ » Output
Output_Time message
Latency
Input
Dispatch_Offset (if imposed) ?VZS.E?,?S
Dispatch_Jitter (if describing max scheduling delay)
Earliest period start
( ig) ( 181 Period on other node \ ( iS)
Thread execution | Deadline \

»

| Thread execution |

[

q T Earliest output message

Latest output
message

__— Latest period start Max(Latency) >

A 4

™~ Min(Output_Time)

>/ Min(Latency)

Latest period start
on other node

Max(Output_Time)

Causality Constraint PALS Period Constraint
Messages don't arrive too soon Messages don't arrive too late
© Copyright 2011 Rockwell Collins, Inc. 16

All rights reserved.



Rockwel/
Collins

Structural property checks

e Attached at pattern
instantiation

— Model-independent
— Assumptions
— Pre/post-conditions

e Lute theorems
— Based on REAL
— Eclipse plug-in
— Structural properties in
AADL model

© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

PALS Threads := {s in Thread_Set | Property_Exists(s,
"PALS_Properties: :PALS_I1d")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS Properties::PALS 1d™);
PALS_Group(t) := {s in PALS Threads | PALS_1d(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock Jitter'™) for p in Processor_Set |
Cardinal ({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and
Member (Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s In PALS Threads do
check Property_Exists(s, '"Period"™) and
PALS Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS Threads do
PALS_Group := PALS Group(s);
Clock_Jitter := Max_Thread_Jditter(PALS_Group);
Min_Latency := Min({Lower(Property(c, '"Latency')) for
c in Connections_Among(PALS_Group)});

Output_Delay := {Property(t, "Output_Delay') for t in PALS_Group};

check (if 2 * Clock_Jitter > Min_Latency then
Min(Output_Delay) > 2 * Clock Jitter - Min_Latency
else
true);
end;

17




Rockwel/
Collins

Contracts between patterns

Avionics

System

e Avionics system requirement
leader transition

bounded

Under single-fault assumption, GC

output transient response is bounded
in time and magnitude

one node
operational

e Relies upon synchronous

— Guarantees provided by communication
patterns and components

— Structural properties of

GUARANTEES =———

model
— System-level fault
assumptions timing not
constraints co-located

€= ASSUMPTIONS

Principled mechanism

Platform

for “passing the buck”

© Copyright 2011 Rockwell Collins, Inc. 18
All rights reserved.



Collins

Categories of properties

e Behavioral
— Pattern and component interactions
— Specified in PSL, verified by model checking
— Failed node will not be leader in next step
G(ldevice ok[j] -> X(leader[i] = })) ;
e Structural
— Properties of the transformed model
— Pattern assumptions, post-conditions
— Specified and checked using Lute
— PALS period constraint
Deadline < PALS Period - Max_Latency - 2*Clock Jitter
e Resource allocation
— RT schedulability, memory allocation, bandwidth allocation
— ASIIST tool (UIUC/RC)
— Threads can be scheduled to meet their deadlines

© Copyright 2011 Rockwell Collins, Inc. 19
All rights reserved.



Collins

Next steps

e Compositional techniques for system verification
— Assume-Guarantee ledger

e Continue development of pattern instantiation tool
— Implement additional patterns (Voting, Simplex)

© Copyright 2011 Rockwell Collins, Inc. 20
All rights reserved.



Collins

Complexity-Reducing Design Patterns for Cyber Physical Systems

Objective
* Achieve dramatic reduction in ‘ b b !
the time required to design and ' [ are P SYSTEM
verify complex, mixed-criticality | | PATTERN = NI
cyber-physical systems ! b
Key innovations - -
. . i |
 Complexity-reducing system | awomate | [oormea] G|, NoTanTiaTE SvsTEM A
design patterns with formally } 8 VERFY —>|comp sPEC [T AR L L RS MODEL cEnerate >|IMPLEMENTATION
guaranteed propertles LIBRARY | | | CONSTRAINTS
. . | N~
* Architectural modeling and | /I\ L 7
analysis to support virtual | >y
integration, composition, and " [comPoNENT b b
o . | COMPONENT| | | o
verification of system-level | | MODELS LBRARY | | | COMPOSITIONAL | |
properties L ANALYSIS |
* Automated formal verification 3 \T P
deeply embedded in the system | P )
design process itself o !
SPECIFICATION b SYSTEM DEVELOPMENT P FOUNDRY
REQUIREMENTS REWORK DELIVERY | m p aCt

« Dramatic schedule efficiencies

» Correct by construction eliminates
rework cycles

* Integrated verification eliminates
rework & retest - direct to foundry

Team

* Rockwell Collins ATC

* University of lllinois U-C

 University of Minnesota

IMPLEMENTATION

> + WW Technology Group
TRADITIONAL DEVELOPMENT PROCESS CORRECT-BY-CONSTRUCTION PROCESS Technolo gy Transition
DESIGN->BUILD->TEST->REDESIGN SUPPORTS ACCELERATED SCHEDULE .
» Focus on open standard modeling
languages
© Copyright 2011 Rockwell Collins, Inc. 21

All rights reserved.



