
© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Complexity-Reducing Design Patterns
for Cyber-Physical Systems

DARPA TTO - META

14-16 June 2011
Darren Cofer

Approved for public release: distribution unlimited

2© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

META is part of the DARPA AVM program

3© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

What is META?
• Devise, implement, and demonstrate a radically different approach to the design,

integration/manufacturing, and verification of defense systems/vehicles

• Enhance designer’s ability to manage system complexity

• “Foundry-style” model of
manufacturing

• Five technical areas

1. Metrics of complexity

2. Metrics of
adaptability

3. Meta-language for
system design

4. Design flow & tools

5. Verification flow &
tools

4© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Team

• Rockwell Collins / Advanced Technology Center
– Darren Cofer, Steven Miller, Andrew Gacek
– System modeling & analysis, tooling, integration

• UIUC
– Lui Sha
– Design pattern development

• University of MN
– Michael Whalen
– Pattern verification, compositional analysis

• WWTG
– Chris Walter
– Pattern implementation & analysis tools

5© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Topics

• Review: What is a design pattern?
• Key insights
• Results

– Design flow and tools
– PALS: vertical contract
– Structural property checking
– Contract between patterns

• Next steps

6© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

• Design pattern = model transformation
– p : M  M (partial function)

– Applied to system models

• Verification reuse is key
– Not software reuse in OO style
– Patterns (and components) provide guaranteed behavior
– Formal verification effort amortized over many system designs

• Reduce/manage system complexity
– Separation of concerns
– System logic vs. application logic
– Compositional reasoning exploits system hierarchy

• Encapsulate & standardize good solutions
– Raise level of abstraction
– Codify best practices

Complexity-Reducing
Architectural Design Patterns

7© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Vision

• System design & verification through pattern application

COMPUTING
RESOURCESENSOR

LRU

FAIL-SILENT
NODE FROM

REPLICAS

COMPUTING
RESOURCE A

COMPUTING
RESOURCE B

VOTE
MULTIPLE

DATA

SENSOR 1

SENSOR 2

SENSOR 3

VERIFIED
AVAILABILITY

VERIFIED
INTEGRITYARCHITECTURE

MODEL

COMPOSITIONAL PROOF OF CORRECTNESS
(ASSUME – GUARANTEE)

SAFETY, BEHAVIORAL,
PERFORMANCE PROPERTIES

8© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Design patterns attack system complexity through
automated model transformations

Ac
tiv

e-
st

an
db

y
(2

no
de

s)

Ac
tiv

e-
st

an
db

y
(3

no
de

s)

Pa
ir-

pa
ir

(q
ua

d)
re

du
nd

an
t

Pa
ir-

pa
ir

/ A
ct

iv
e

st
an

db
y

Pa
ir-

pa
ir

/ T
M

R

PALS

Async1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

SYNCHRONOUS NETWORK ASYNCHRONOUS BOUNDED DELAY NETWORK WITH PALS

NODE 1

NODE 2

NODE 3

NODE 1

NODE 2

NODE 3
T CLOCK JITTER

i i + 1 i i + 1

PALS pattern achieves >3 orders
of magnitude reduction in state

space and verification complexity

“Use of formally verified Active/Standby
design cut development time by 1/3 and
saved hundreds of hours of on-aircraft
test time.” — RC Commercial Systems

Active-Standby pattern allows
system developers to work at a

higher level of abstraction

9© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Powerful system synthesis tools based on
pre-verified design patterns achieve dramatic
reduction in rework and testing effort

PATTERN &
COMP SPEC

LIBRARY

INSTANTIATE
ARCH PATTERNS

& CHECK
CONSTRAINTS

SYSTEM
MODELING

ENVIRONMENT

COMPOSITIONAL
REASONING &

ANALYSIS

SYSTEM
MODEL

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

s e tD e s i re d S p e e d
b o o le a n

2

m o d e
u in t3 2

1

s e tE ve n t

s a fe ty C o n d it io n

c a n c e l

b r a k e P e d a l

c a r G e a r

c a r S p e e d

va l id in p u ts

s a fe tyC o n d i tio n

re s u m e E ve n t

m o d e _ lo g ic

o n O ff

d e c e l

s e t

a c c e l

r e s u m e

s a fe tyC o n d i tio n

m o d e

s e tD e s i re d S p e e d

D e la y = 1 S e c

D e la y = 1 S e c

va lid In p u t s
b o o le a n

tru e _ f a ls e

8

c a rS p e e d
d o u b le

m i l e s_ p e r_ h o u r

7

c a rG e a r
u in t3 2

e n u m e r a te d

6

b ra k e P e d a l
b o o le a n
o n _ o ff

5

c a n c e l
b o o le a n

tr u e _ fa ls e

4

a c c e lR e s u m e
b o o le a n
o n _ o ff

3

d e c e lS e t
b o o le a n
o n _ o ff

2

o n O ff
b o o le a n
o n _ o ff

1

cruiseThrottle
double

miles_per_hour

1

throttleDelta
%_per_step

thottleDelta
%_per_second

1.00

isCruiseActive?

<Init = 0.0>

z

1

StepsPerSec

<U=10.0>
<L=-10.0>

<U=100.0>
<L=0.0>

NO THROTTLE
double

0.0

double

carSpeed
double

miles_per_hour

3

desiredSpeed
double

miles_per_hour

2

mode
uint32

enumerated

1

d e s i re d S p e e d
d o u b le

m il e s _p e r_h o u r

3

c ru is e Th ro t t le
d o u b le

p e rc e n ta g e

2

m o d e
u in t3 2
e n u m e ra te d

1

[c a rS p e e d]

[c a rS p e e d]

S e t Th ro t t le

m o d e

d e s i re d S p e e d

c a rS p e e d

c ru i s e T h ro ttle

S e tD e s ire d S p e e d

m o d e

c a rS p e e d

s e tD e s ire d S p e e d

d e s ire d S p e e d

M o d e L o g ic

o n O ff

d e c e lS e t

a c c e lR e s u m e

c a n c e l

b ra k e P e d a l

c a rG e a r

c a rS p e e d

va li d In p u ts

m o d e

s e tD e s i re d S p e e d

G o t o

[c a rS p e e d]

va l id In p u t s
b o o le a n

tru e _fa l s e

8

c a rS p e e d
d o u b le

m il e s _p e r_h o u r

7

c a rG e a r
u in t3 2

e n u m e ra te d

6

b ra k e P e d a l
b o o le a n
o n_ o ff

5

c a n c e l
b o o le a n

tru e _fa l s e

4

a c c e lR e s u m e
b o o le a n
o n_ o ff

3

d e c e lS e t
b o o le a n
o n_ o ff

2

o n O ff
b o o le a n
o n_ o ff

1

cruiseThrottle
double

percentage

3

desiredSpeed
double

miles_per_hour

2

mode
uint32

enumerated

1

isBrakePressed?[brakePosition]

CruiseController

onOff

decelSet

accelResume

cancel

brakePedal

carGear

carSpeed

validInputs

mode

cruiseThrottle

desiredSpeed

validInputs
boolean

true_false

7

carSpeed
double

miles_per_hour

6

carGear
uint32

enumerated

5

cancel
boolean

true_false

4

accelResume
boolean

true_false

3

decelSet
boolean

true_false

2

onOff
boolean

true_false

1

Verification
reuse

Rework
elimination

Guaranteed
design “Rework cost is up to 60% of

total development cost for large,
complex systems.” — AVSI SAVI

Verification effort amortized
over many designs as basis
for correct-by-construction

system design

Compositional verification
exploits natural system

hierarchy through formal
assume-guarantee reasoning

A
SS

U
M

PT
IO

N
S

G
U

A
R

A
N

TE
ES

10© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Initial design patterns

• PALS
– Just enough synchronization

• Replication
– Foundation for more complex

fault-tolerance patterns

• Leader Selection
– Set of nodes agree on leader

• In the works…
– Voter
– Simplex
– PALS Whiteboard

Assumptions:
Not co-located
Less than N faults

Guarantees:
One operational

Assumptions:
One operational
Synchronous comm

Guarantees:
Leader exists
Leader non-failed
Non-failed nodes agree
Non-failed leader unchanged

Assumptions:
PALS Causality Constraint
PALS Period Constraint

Guarantees:
Period equals PALS Period
Synchronous comm

11© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Pattern design

• Build patterns from
fundamental operations
– Replicate component
– Remove component
– Rename component
– Insert component
– Insert data specification
– Replicate feature
– Rename feature
– Create feature
– Remove feature
– Create connection
– Remove connection
– Insert property set
– Assign property

• Build larger patterns from
smaller patterns
– Active-Standby =

Replication +
Leader Selection +
PALS

• Pattern can include
structural constraints on
models for instantiation
– Ex: only apply PALS to leaf

nodes

• Guaranteed behaviors of
patterns are verified
separately
– Added to patterns as new

AADL properties

12© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

A
v
io

n
ic

s
S

y
st

e
m

Initial
System

Final
System

Pattern Application

S
y
st

e
m

 H
ie

ra
rc

h
y

Replicate Leader Selection PALS Replicate
Active Standby Pattern

System Design Through Pattern Application

F
li

g
h

t
C

o
n

tr
o

l
F
li

g
h

t
G

u
id

a
n

ce

13© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Design flow

PATTERN &
COMP SPEC

LIBRARY

INSTANTIATE
ARCH PATTERNS

& CHECK
CONSTRAINTS

SYSTEM
MODELING

ENVIRONMENT

COMPOSITIONAL
REASONING &

ANALYSIS

SYSTEM
MODEL

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

Correct
pattern
application

EDICT/Lute
Create/edit
system
design

OSATE / EA

Assumptions +
Guarantees =
System props

KIND/NuSMV

Reusable
pattern
verification

MC/TP

14© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Tool architecture

• Eclipse
– Tool integration using plug-ins
– Eclipse Modeling Framework
– Builds on existing AADL tools

• Plug-ins
– OSATE: AADL editing (SEI)
– EDICT: Pattern instantiation (WWTG)
– META: Import SysML from EA (RC)
– META: Structural property checking by Lute (RC)
– META: Assume-guarantee verification (UMN) – TBD

AADLSysML Patterns Structural
checks

PALS_Threads := {s in Thread_Set | Property_Exists(s, "PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do

check Property_Exists(s, "Period") and
PALS_Period(s) = Property(s, "Period");

end;

theorem PALS_Causality
foreach s in PALS_Threads do

PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else

true);
end;

System
verification

LS

PALS Rep
synchronous

communication
one node
operational

Avionics
System

one leader

15© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

System architecture model

• Software + HW platform
– Process, thread, processors, bus

• PALS vertical contract
– PALS timing constraints on

platform
– Check AADL structural properties

• Guarantees
– Sync logic executes at

PALS_Period
– Synchronous_Communication

=> “One_Step_Delay”

• Assumptions (about platform)
– Causality constraint:

Min(Output time) ≥ 2ε – μmin

– PALS period constraint:
Max(Output time) ≤ T - μmax - 2ε

Software

Platform

16© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

PALS assumptions in AADL model

Compute_Execution_Time

Latency

Ti Ti+1
(± ) (± )

Output
message

Input
message
available

Period

Deadline

Dispatch_Offset (if imposed)
Dispatch_Jitter (if describing max scheduling delay)

Output_Time

Clock_Jitter

Thread execution

(±)

Latest period start
on other node

Earliest output message

Min(Output_Time)

Min(Latency)

Causality Constraint
Messages don’t arrive too soon

Thread execution

Max(Latency)

(±) (±)

Latest output
message

Deadline

Latest period start

Earliest period start
on other nodePeriod

Max(Output_Time)

PALS Period Constraint
Messages don’t arrive too late

17© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Structural property checks

• Attached at pattern
instantiation
– Model-independent
– Assumptions
– Pre/post-conditions

• Lute theorems
– Based on REAL
– Eclipse plug-in
– Structural properties in

AADL model

PALS_Threads := {s in Thread_Set | Property_Exists(s,
"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do
check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS_Threads do
PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else
true);

end;

PALS_Threads := {s in Thread_Set | Property_Exists(s,
"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do
check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS_Threads do
PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else
true);

end;

18© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Contracts between patterns

• Avionics system requirement

• Relies upon
– Guarantees provided by

patterns and components
– Structural properties of

model
– System-level fault

assumptions

LS

PALS Rep

Platform

synchronous
communication

one node
operational

timing
constraints

not
co-located

Avionics
System

leader transition
bounded

A
SS

U
M

PT
IO

N
S

G
U

A
R

A
N

TE
ES

Under single-fault assumption, GC
output transient response is bounded
in time and magnitude

Principled mechanism
for “passing the buck”

19© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Categories of properties

• Behavioral
– Pattern and component interactions
– Specified in PSL, verified by model checking
– Failed node will not be leader in next step

G(!device_ok[j] -> X(leader[i] != j)) ;

• Structural
– Properties of the transformed model
– Pattern assumptions, post-conditions
– Specified and checked using Lute
– PALS period constraint

Deadline < PALS_Period - Max_Latency - 2*Clock_Jitter

• Resource allocation
– RT schedulability, memory allocation, bandwidth allocation
– ASIIST tool (UIUC/RC)
– Threads can be scheduled to meet their deadlines

20© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Next steps

• Compositional techniques for system verification
– Assume-Guarantee ledger

• Continue development of pattern instantiation tool
– Implement additional patterns (Voting, Simplex)

21© Copyright 2011 Rockwell Collins, Inc.
All rights reserved.

Complexity-Reducing Design Patterns for Cyber Physical Systems
Objective
• Achieve dramatic reduction in

the time required to design and
verify complex, mixed-criticality
cyber-physical systems

Key innovations
• Complexity-reducing system

design patterns with formally
guaranteed properties

• Architectural modeling and
analysis to support virtual
integration, composition, and
verification of system-level
properties

• Automated formal verification
deeply embedded in the system
design process itself

PATTERN &
COMP SPEC

LIBRARY

INSTANTIATE
ARCH PATTERNS

& CHECK
CONSTRAINTS

SYSTEM
MODELING

ENVIRONMENT

COMPOSITIONAL
REASONING &

ANALYSIS

SYSTEM
MODEL

AUTO
GENERATE

SYSTEM
IMPLEMENTATION

ARCH
PATTERN
MODELS

COMPONENT
MODELS

ANNOTATE
& VERIFY
MODELS

COMPONENT
LIBRARY

SPECIFICATION SYSTEM DEVELOPMENT FOUNDRY

Impact
• Dramatic schedule efficiencies
• Correct by construction eliminates

rework cycles
• Integrated verification eliminates

rework & retest  direct to foundry
Team
• Rockwell Collins ATC
• University of Illinois U-C
• University of Minnesota
• WW Technology Group
Technology Transition
• Focus on open standard modeling

languages

PATTERN
& COMP.
LIBRARY

REWORK

REWORK

REWORK

TRADITIONAL DEVELOPMENT PROCESS
DESIGNBUILDTESTREDESIGN

CORRECT-BY-CONSTRUCTION PROCESS
SUPPORTS ACCELERATED SCHEDULE

DESIGN 

VERIFIC
ATIO

N 

REQUIREMENTS

IMPLEMENTATION

DESIG
N W

ITH VERIFICATIO
N 

DELIVERY

