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What is META?
• Devise, implement, and demonstrate a radically different approach to the design, 

integration/manufacturing, and verification of defense systems/vehicles

• Enhance designer’s ability to manage system complexity

• “Foundry-style” model of 
manufacturing

• Five technical areas

1. Metrics of complexity

2. Metrics of 
adaptability

3. Meta-language for 
system design

4. Design flow & tools

5. Verification flow & 
tools
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Team

• Rockwell Collins / Advanced Technology Center
– Darren Cofer, Steven Miller, Andrew Gacek
– System modeling & analysis, tooling, integration

• UIUC
– Lui Sha
– Design pattern development

• University of MN
– Michael Whalen
– Pattern verification, compositional analysis

• WWTG
– Chris Walter
– Pattern implementation & analysis tools
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Topics

• Review: What is a design pattern?
• Key insights
• Results

– Design flow and tools
– PALS: vertical contract
– Structural property checking
– Contract between patterns

• Next steps
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• Design pattern = model transformation
– p : M  M (partial function)

– Applied to system models

• Verification reuse is key
– Not software reuse in OO style
– Patterns (and components) provide guaranteed behavior
– Formal verification effort amortized over many system designs

• Reduce/manage system complexity
– Separation of concerns
– System logic vs. application logic
– Compositional reasoning exploits system hierarchy

• Encapsulate & standardize good solutions
– Raise level of abstraction
– Codify best practices

Complexity-Reducing 
Architectural Design Patterns
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Vision

• System design & verification through pattern application
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Design patterns attack system complexity through 
automated model transformations
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PALS pattern achieves >3 orders 
of magnitude reduction in state 

space and verification complexity

“Use of formally verified Active/Standby 
design cut development time by 1/3 and 
saved hundreds of hours of on-aircraft 
test time.” — RC Commercial Systems

Active-Standby pattern allows 
system developers to work at a 

higher level of abstraction
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Powerful system synthesis tools based on 
pre-verified design patterns achieve dramatic 
reduction in rework and testing effort 
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Verification effort amortized 
over many designs as basis 
for correct-by-construction 

system design
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Initial design patterns

• PALS
– Just enough synchronization

• Replication
– Foundation for more complex 

fault-tolerance patterns

• Leader Selection
– Set of nodes agree on leader

• In the works…
– Voter
– Simplex
– PALS Whiteboard

Assumptions:
Not co-located
Less than N faults

Guarantees: 
One operational

Assumptions:
One operational
Synchronous comm

Guarantees: 
Leader exists
Leader non-failed
Non-failed nodes agree
Non-failed leader unchanged

Assumptions:
PALS Causality Constraint
PALS Period Constraint

Guarantees: 
Period equals PALS Period
Synchronous comm
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Pattern design

• Build patterns from 
fundamental operations
– Replicate component
– Remove component
– Rename component
– Insert component
– Insert data specification
– Replicate feature
– Rename feature
– Create feature
– Remove feature
– Create connection
– Remove connection
– Insert property set
– Assign property

• Build larger patterns from 
smaller patterns
– Active-Standby = 

Replication + 
Leader Selection + 
PALS

• Pattern can include 
structural constraints on 
models for instantiation
– Ex: only apply PALS to leaf 

nodes

• Guaranteed behaviors of 
patterns are verified 
separately
– Added to patterns as new 

AADL properties
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Design flow
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Tool architecture

• Eclipse
– Tool integration using plug-ins
– Eclipse Modeling Framework
– Builds on existing AADL tools

• Plug-ins
– OSATE: AADL editing (SEI)
– EDICT: Pattern instantiation (WWTG)
– META: Import SysML from EA (RC)
– META: Structural property checking by Lute (RC)
– META: Assume-guarantee verification (UMN) – TBD

AADLSysML Patterns Structural 
checks

PALS_Threads := {s in Thread_Set | Property_Exists(s, "PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do

check Property_Exists(s, "Period") and
PALS_Period(s) = Property(s, "Period");

end;

theorem PALS_Causality
foreach s in PALS_Threads do

PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else

true);
end;

System
verification

LS

PALS Rep
synchronous

communication
one node
operational

Avionics
System

one leader
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System architecture model

• Software + HW platform
– Process, thread, processors, bus

• PALS vertical contract
– PALS timing constraints on 

platform
– Check AADL structural properties 

• Guarantees
– Sync logic executes at 

PALS_Period
– Synchronous_Communication

=> “One_Step_Delay”

• Assumptions (about platform)
– Causality constraint:

Min(Output time) ≥ 2ε – μmin

– PALS period constraint:
Max(Output time) ≤ T - μmax - 2ε

Software

Platform
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PALS assumptions in AADL model
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Structural property checks

• Attached at pattern 
instantiation
– Model-independent
– Assumptions
– Pre/post-conditions

• Lute theorems
– Based on REAL
– Eclipse plug-in
– Structural properties in 

AADL model

PALS_Threads := {s in Thread_Set | Property_Exists(s, 
"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do
check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS_Threads do
PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else
true);

end;

PALS_Threads := {s in Thread_Set | Property_Exists(s, 
"PALS_Properties::PALS_Id")};

PALS_Period(t) := Property(t, "PALS_Properties::PALS_Period");
PALS_Id(t) := Property(t, "PALS_Properties::PALS_Id");
PALS_Group(t) := {s in PALS_Threads | PALS_Id(t) = PALS_Id(s)};

Max_Thread_Jitter(Threads) :=
Max({Property(p, "Clock_Jitter") for p in Processor_Set |

Cardinal({t in Threads | Is_Bound_To(t, p)}) > 0});

Connections_Among(Set) :=
{c in Connection_Set | Member(Owner(Source(c)), Set) and

Member(Owner(Destination(c)), Set)};

theorem PALS_Period_is_Period
foreach s in PALS_Threads do
check Property_Exists(s, "Period") and

PALS_Period(s) = Property(s, "Period");
end;

theorem PALS_Causality
foreach s in PALS_Threads do
PALS_Group := PALS_Group(s);
Clock_Jitter := Max_Thread_Jitter(PALS_Group);
Min_Latency := Min({Lower(Property(c, "Latency")) for

c in Connections_Among(PALS_Group)});
Output_Delay := {Property(t, "Output_Delay") for t in PALS_Group};
check (if 2 * Clock_Jitter > Min_Latency then

Min(Output_Delay) > 2 * Clock_Jitter - Min_Latency
else
true);

end;



18© Copyright 2011 Rockwell Collins, Inc. 
All rights reserved.

Contracts between patterns

• Avionics system requirement

• Relies upon
– Guarantees provided by 

patterns and components
– Structural properties of 

model
– System-level fault 

assumptions
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Categories of properties

• Behavioral
– Pattern and component interactions
– Specified in PSL, verified by model checking
– Failed node will not be leader in next step

G(!device_ok[j] -> X(leader[i] != j)) ; 

• Structural
– Properties of the transformed model
– Pattern assumptions, post-conditions
– Specified and checked using Lute
– PALS period constraint

Deadline < PALS_Period - Max_Latency - 2*Clock_Jitter

• Resource allocation
– RT schedulability, memory allocation, bandwidth allocation
– ASIIST tool (UIUC/RC)
– Threads can be scheduled to meet their deadlines
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Next steps

• Compositional techniques for system verification
– Assume-Guarantee ledger

• Continue development of pattern instantiation tool
– Implement additional patterns (Voting, Simplex)
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Complexity-Reducing Design Patterns for Cyber Physical Systems
Objective
• Achieve dramatic reduction in 

the time required to design and 
verify complex, mixed-criticality 
cyber-physical systems 

Key innovations
• Complexity-reducing system 

design patterns with formally 
guaranteed properties

• Architectural modeling and 
analysis to support virtual 
integration, composition, and 
verification of system-level 
properties

• Automated formal verification 
deeply embedded in the system 
design process itself
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Impact
• Dramatic schedule efficiencies
• Correct by construction eliminates 

rework cycles
• Integrated verification eliminates 

rework & retest  direct to foundry
Team
• Rockwell Collins ATC
• University of Illinois U-C
• University of Minnesota
• WW Technology Group
Technology Transition
• Focus on open standard modeling 

languages
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